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Abstract. We study the critical points of Laplace eigenfunctions on polygonal domains with a focus on the second

Neumann eigenfunction. We show that if each convex quadrilaterals has no second Neumann eigenfunction with

an interior critical point, then there exists a convex quadrilateral with an unstable critical point. We also show
that each critical point of a second-Neumann eigenfunction on a Lip-1 polygon with no orthogonal sides is an acute

vertex.

1. Introduction

A second Neumann eigenfunction u of the Laplacian approximates the temperature distribution of an insulated
domain for large times. The ‘hot spots’ conjecture [Rch74] [Kwl85] is the assertion that u does not assume its
maximum value in the interior of the domain. The conjecture is false for some non-contractible plane domains
[BrdWrn99] [Brd05] but is still believed to be true for convex domains. The conjecture is known to be true when the
domains are somewhat elongated, for example, the Lip-1 planar domains of [AtrBrd04]. In [JdgMnd20] [JdgMnd22a]
we show that the hot spots conjecture holds true for acute triangles thus resolving Polymath 7 [Polymath].

In the present paper, we extend our study of critical points of eigenfunctions to general polygons and we encounter
new phenomena. Note that every planar domain may be approximated by polygonal domains, and hence the weak
form of the hot spots conjecture—some second Neumann eigenfunction has no interior maximum—for all planar
domains would follow from the verification of the strong hot spots conjecture—every second Neumann eigenfunction
has no interior maximum—for all polygonal domains.

Our general approach to the hot spots conjecture is based on the fact that eigenfunctions and their critical points1

vary continuously as one varies the domain. Roughly speaking, to show that a second Neumann eigenfunction u0
on a polygon U0 has no interior critical points, one constructs a path of polygons Pt and an associated path of
eigenfunctions ut so that the eigenfunction u1 on P1 has no interior critical points. If one can show that the putative
critical points of each ut are ‘stable’ under perturbation, then u0 also has no interior critical points.

In the case of triangles, we took P1 to be a right isosceles triangle, and we established enough stability to
successfully implement this strategy [JdgMnd20] [JdgMnd22a]. Here we show that the strategy is likely to be more
difficult to implement if the polygon has more sides.

Theorem 1.1. If each convex quadrilateral has no interior critical point, then there exists a convex quadrilateral Q,
a second Neumann eigenfunction u on Q, and a nonvertex critical point p of u that is not stable under perturbation.

By ‘stable under perturbation’ we mean that if Qn is a sequence of quadrilaterals that converges to Q and un is
a sequence of second Neumann eigenfunctions on Qn that converges to u, then each un has a critical point pn so
that pn converges to p. We conjecture that instability does not hold for triangles.

On the other hand, we are able to successfully apply our strategy for resolving the hot spots conjecture on a
large class of polygons.

Theorem 1.2. Suppose that Pt is a path of polygons such that each Pt has exactly two acute vertices, no two sides
of Pt are orthogonal, and P1 is an obtuse triangle. Then the second Neumann eigenvalue of P0 is simple, and the
set of critical points of each eigenfunction consists of the two acute vertices.

The class of polygons described in Theorem 1.2 is exactly (up to rigid motion) the class of polygons that have no
orthogonal sides and satisfy the Lip-1 condition of [AtrBrd04] (see Proposition 7.7). Thus, Theorem 1.2 provides
a non-probabilistic proof of the weak hot spots conjecture for Lip-1 domains. Moreover, in contrast to the result
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1With the exception of rectangles, the critical set of a second Neumann eigenfunction on a simply connected polygon

is finite [JdgMnd22b].

1



2 CHRIS JUDGE AND SUGATA MONDAL

of [AtrBrd04], we find that not only are there no interior critical points but there are also no critical points on the
boundary other than the two acute vertices. Recently, Jonathan Rohleder [Rhl21] announced a non-probabilistic
proof of the main result of [AtrBrd04].

We now outline the contents of this paper. In section 2, we use the Bessel expansion of an eigenfunction u to
understand the nodal set of Xu near a vertex where X is a constant (resp. rotational) vector field.2 In particular,
we show that whether or not an arc subset of the nodal set of Xu ends at the vertex is essentially determined by
the first two Bessel coefficients, the angle at v, and the angle between the vector field and the sides adjacent to v
(resp. location of central point). These criteria will be used crucially in the proof of Theorem 1.2.

We will need to rule out the possibility that critical points of a sequence of eigenfunctions, associated to a
convergent sequence of polygons, converge to a vertex of the limiting polygon. In §3 we show in various contexts
that if critical points converge to a vertex v, then the first two Bessel coefficients of the limiting eigenfunction equal
zero. If the limiting polygon is simply connected then this is impossible (Proposition 6.3).

To check the stability of a critical point under perturbation, we will use a variant of the Poincaré-Hopf index.
In §4, we define this invariant to include vertices and we prove a variant of the Poincaré-Hopf index formula for
Neumann eigenfunctions u on polygons. We relate the index of a critical point of u located at a vertex v with the
first two Bessel coefficients of u at v. We also show that the ‘total local index’ is unchanged under perturbation
(Theorem 4.14). As a consequence each non-zero index critical point is stable (Lemma 4.15).

In §5 we provide a local normal form for an eigenfunction in a neighborhood of a critical point p of u whose
Poincaré-Hopf index equals zero (Lemma 5.1). Using this local normal form, we find that an index zero critical
point cannot be a degree 1 vertex of the nodal set of Xu where X is either a constant or rotational vector field.

In §6 we specialize to simply connected polygons. For such domains, the nodal set of a second Neumann
eigenfunction u is a simple arc, and from this fact we deduce that at least one of the first two Bessel coefficients at
each vertex is nonzero. This implies a tighter relationship between the index of a vertex critical point of u and the
first two Bessel coefficients (Corollary 6.4).

In §7 we prove Theorem 1.2 (Theorem 7.3). We first show that if a polygon P has at least one acute vertex
and a second Neumann eigenfunction u on P has an interior critical point, then either u has four non-zero index
critical points or there exists a side e of P such that the nodal set of the derivative of u in the direction u of e has
an arc that ends at a vertex v of P . This leads us to consider, for the path ut in Theorem 1.2, the number, S(t), of
nonzero index critical points and the number, V (t), of vertices that are endpoints of a nodal arc of the derivative
of ut in the direction of a side of P . We show that the set A of t ∈ [0, 1] such that either S(t) ≥ 3 or V (t) ≥ 1 is
open and closed. For the obtuse triangle P1, we have S(1) = 2 and V (1) = 0, and hence A is empty. In particular,
the initial polygon P0 has at most two non-zero index critical points, and from this we deduce using the results of
§5 that there are no zero index critical points. Using the fact that V (0) = 0, we find that the two critical points
are located at the vertices of P0. These two critical points are the unique global extrema, and this implies that the
eigenspace is one-dimensional.

In §8 we provide a criterion for the instability of a critical point on a quadrilateral. This criterion is based on
the fact that the index of a vertex with angle less than π cannot equal −1 (Corollary 6.4). In particular, an index
−1 critical point cannot cross from one side adjacent to a vertex to the other side of the vertex if the angle at the
vertex is in (π/2, π). Hence one is led to find a path of quadrilaterals Qt such that Q0 has an index −1 critical
point that lies on one side of a vertex and Q1 and has an index −1 critical point on the other side of the vertex.

In §9 we construct such a path of quadrilaterals and thus prove Theorem 1.1 (Theorem 9.5). The path is
constructed by taking a nearly isosceles triangle whose vertex v of smallest angle is less than π/3, and then
‘breaking’ the side opposite to v.

In §10 we specialize to convex polygons and find that if a second Neumann eigenfunction has only three critical
points then one is a minimum, one is a maximum, and the third has index zero.

2. Solutions to ∆u = λu on a sector

To understand the behavior of an eigenfunction in a neighborhood of a vertex v of angle β of a polygon, we will
consider its Fourier-Bessel expansion. By performing a rigid motion, we may assume that the vertex v is the origin,
one side adjacent to v lies in the ray {z = r : r ≥ 0} the nonnegative real axis, and the other side lies in the ray
{z = r · eiβ : r ≥ 0}. If u is a (real) solution to ∆u = λu with eigenvalue µ that satisfies Neumann conditions on

2Here we regard each vector field X as a first order differential operator.
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the the rays θ = 0 and θ = β, then separation of variables leads to the Fourier-Bessel expansion:

(1) u
(
reiθ

)
=

∞∑
n=0

cn · Jnπ
β
(
√
µ · r) · cos

(
nπθ

β

)
.

Here cn ∈ R and Jν denotes the Bessel function of the first kind of order ν [Lebedev]

(2) Jν(x) = xν ·
∞∑
k=0

(−1)k · x2k

22k · Γ(k + ν) · Γ(k + ν + 1)

where Γ is the Gamma function.
If u satisfies Dirichlet conditions on the rays θ = 0 and θ = β, then the one replaces cos with sin, and if u satisfies

Dirichlet conditions on the ray θ = 0 and Neumann conditions on the ray θ = β, then one replaces cos(nπθ/β) with
sin(nπθ/2β) and Jnπ/β with Jnπ/2β .

From (2) we find that, for each ν ≥ 0, there exists an entire function gν so that Jν(
√
µ · r) = rν · gν(r2).3 Note

that neither gν nor g′ν vanishes in a neighborhood of 0 for each ν ≥ 0. With this notation, (1) takes a more compact
form

(3) u
(
reiθ

)
=

∞∑
n=0

cn · rn·ν · gn·ν
(
r2
)
· cos (n · ν · θ)

where ν = π/β. Note that we are suppressing the dependence of g on the eigenvalue µ.
Given a function f , let Z(f) = f−1(0) denote the nodal set of f . For each ψ ∈ R, let Lψ denote the constant

vector field defined by

(4) Lψu = cos(ψ) · ∂x + sin(ψ) · ∂y.
Lemma 2.1. Let u be a solution to ∆u = λu that satisfies Neumann conditions on the rays θ = 0 and θ = β.

(a) If c0 ̸= 0 and either 0 < β < π/2 or c1 = 0, then there exists an arc in Z(Lψu) with an endpoint at the
vertex v if and only if ψ ∈ [π/2, π/2 + β] mod π.

(b) If c1 ̸= 0 and π/2 < β < π, then there exists an arc in Z(Lψu) with an endpoint at the vertex if and only
if ψ ∈ [β − π/2, π/2] mod π.

(c) If c1 ̸= 0 and β = π, then there exists an arc in Z(Lψu) with an endpoint at the vertex if and only if
ψ = π/2 mod π. Moreover, near the vertex v, this arc lies on ∂P .

(d) If c1 ̸= 0 and β > π, then there exists an arc in Z(Lψu) with an endpoint at the vertex if and only if
ψ ∈ [π/2, β − π/2] mod π.

Moreover, in all of the above situations, Z(Lψu) has at most one arc with an endpoint at the origin. Figure 1
describes some of these situations.

Proof. If ψ = π/2 mod π (resp. ψ = β − π/2 mod π) then because u satisfies Neumann conditions, the arc
corresponding to θ = 0 (resp. θ = β) lies in both Z(Lψu).

Because ∂x = cos(θ) · ∂r − sin(θ)r−1 · ∂θ and ∂y = sin(θ) · ∂r + cos(θ)r−1 · ∂θ, we have

(5) Lψ = cos(ψ − θ) · ∂r + sin(ψ − θ) · 1
r
∂θ.

If c0 ̸= 0 and either c1 = 0 or 0 < β < π/2, inspection of (3) shows that

(6) u
(
reiθ

)
= a + b · r2 + f(r, θ)

where a and b are constants and |Lψf | = o(r) and |∂θLψf | = o(r). In particular, we find that

(7) Lψu
(
reiθ

)
= 2b · r · cos(ψ − θ) + o(r),

and

(8) ∂θLψu
(
reiθ

)
= −2b · r · sin(ψ − θ) + o (r) .

If ψ ∈ (π/2, π/2+β) mod π, then from (7) we find that Lψu(r) and Lψu(re
iβ) have opposite signs for sufficiently

small r. Thus, by the intermediate value theorem, there exists γ(r) ∈ (0, β) so that (Lψu)
(
reiγ(r)

)
= 0. Moreover,

3Note that though gν depends on the eigenvalue µ, we will suppress µ from the notation.
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Figure 1. Some of the cases described by Lemma 2.1. The region shaded pink is a neighborhood
of the vertex v with angle β. The region shaded green describes the directions Lψ for which Lψu
has a nodal arc ending at v.

from (8), we find that the point γ(r) is unique for sufficiently small r, and by the implicit function theorem, γ is
smooth. The map r 7→ reiγ(r) is the desired arc in Z(Lψu). The uniqueness of γ(r) implies that there is at most
one arc.

Thus we have proven (a). To prove (b), note that if β > π/2 or c0 = 0, then inspection of (3) shows that

u
(
r · eiθ

)
= c0 + c1 · rν · cos(ν · θ) + o(rν).

and hence a straightforward computation gives

Lψu
(
r · eiθ

)
= c1 · ν · rν−1 · cos (ψ + (ν − 1) · θ) + o(rν−1).

Note that cos (ψ + (ν − 1) · θ) vanishes if and only if

ψ =
π

2
+ (β − π) · θ

β
mod π.

One argues as in the proof of part (a) to obtain a unique arc of Z(Lψu) that ends at v.
Parts (c) and (d) follow from arguments similar those that verified (a) and (b).

□

In order to succinctly formulate some corollaries of Lemma 2.1 we make the following definition.

Definition 2.2. Suppose β ̸= π/2 and let u be a solution to ∆u = λu on the sector of angle β that satisfies
Neumann conditions. We define the leading Bessel coefficient of u at v to be

• c0 if β < π/2, and
• c1 if β > π/2.

Corollary 2.3. If L is a nonzero constant vector field parallel to one the boundary rays of the sector of angle
β ̸= π/2, then the leading coefficient vanishes if and only if an arc of Z(Lu) ends at v.
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Proof. Since L is parallel to one of the boundary rays, the vector field L is a multiple of Lψ with ψ = 0 or β. In
particular, Z(Lu) = Z(Lψu). By using the reflection symmetry about θ = β/2, we may assume without loss of
generality that ψ = 0.

Suppose that the leading coefficient does not vanish. If β < π/2, then part (a) of Lemma 2.1 implies that no arc
in Z(Lψu) ends at the vertex. Similarly, parts (b), (c), and (d) imply that no arc in Z(Lψu) ends at the vertex in
the other cases.

Conversely, suppose that the leading coefficient does equal zero. Let k be the smallest positive integer such that
ck ̸= 0. If β < π/2, then c0 = 0 and from (3) we find that

u
(
r · eiθ

)
= rk·ν · cos(k · ν · θ) + o

(
rkν

)
.

Hence using (4) we find that

Lψu
(
r · eiθ

)
= k · ν · rk·ν−1 · cos ((k · ν − 1) · θ) + o

(
rkν−1

)
.

Since β < π/2 and k ≥ 1, the function cos((k · ν − 1) · θ) vanishes for some θ ∈ (0, β). An implicit function theorem
argument establishes the existence of a smooth arc.

If β > π/2, then a similar argument applies to give the claim. □

Corollary 2.4. Let u be a solution to ∆u = λu on a sector of angle β not equal to an integral multple of π/2
satisfying Neumann conditions. If one of the first two Bessel coefficients of u is non-zero and if L is a constant
vector field such that

• some arc in Z(Lu) ends at the vertex, and
• L is not orthogonal to a boundary ray of the sector,

then for each constant vector field L′ that is sufficiently close to L, some arc of Z(L′u) ends at the vertex.

Proof. Since β is not equal to an integral multiple of π/2, by Proposition 4.4 [JdgMnd20], there exists a neighborhood
N of the vertex v of the sector that contains no critical points of u.

Since at least one of the zeroth and the first Bessel coefficients of u at v is non-zero, by Lemma 2.1, the set
Z(Lu) contains exactly one arc that ends at v. In particular, u has opposite signs on the the two rays of the sector.
By continuity, for each constant vector field L′ that is sufficiently close to L, some arc of Z(L′u) must end at some
point pL′ near v (depending on L′) that lies on the boundary of the sector.

To finish the proof it suffices to show that pL′ = v for L′ sufficiently close to L. If pL′ is not v, then since L is
not orthogonal to the sides of the sector, so is L′, and hence, pL′ is a critical point of u. If L′ is sufficiently close
then, by continuity, pL′ lies in N . This contradicts the first paragraph of the proof. □

Let Sβ denote the sector {z = r ·eiθ : θ ∈ [0, β] mod π}. Recall that Rw denotes the vector field that corresponds
to rotation about w ∈ C.

Corollary 2.5. Let u be a solution to ∆u = λu that satisfies Neumann conditions on the sides θ = 0 and θ = β.
Suppose that c0 and c1 are not both equal to zero.

(1) If β < π/2

(a) and c0 ̸= 0, then an arc of Z(Rw) ends at the vertex if and only if w lies in Sβ.

(b) and c0 = 0, then an arc of Z(Rw) ends at the vertex if and only if w does not lie in Sβ.

(2) If π/2 < β < π

(a) and c1 ̸= 0, then an arc of Z(Rw) ends at the vertex if and only if w does not lie in Sβ.

(b) and c1 = 0, then an arc of Z(Rw) ends at the vertex if and only if w lies in Sβ.

Proof. If w = ρ · eiφ, then a computation shows that the rotational vector field about w takes the form

Rw = ∂θ + Lφ+π
2
.

Because |∂θu| = o(rν) and |∂2θu| = o(rν), we find that (7) and (8) still hold with Lψ replaced by Rw and ψ replaced
by φ+ π/2. Thus the argument given in the proof of Lemma 2.1 applies. □

Remark 2.6. Similar statements hold for Dirichlet and mixed boundary conditions. We leave the formulation of the
statements to the reader.
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3. Critical points on a sector converging to a vertex

Let Sn be a sequence of sectors that converges to a sector S. Let un : Sn → R be a sequence of solutions to
∆u = λu each satisfying Neumann conditions that converges to a Neumann eigenfunction u : S → R. In this
section we show that if certain types of critical points of un converge to the vertex of S, then the first two Bessel
coefficients of u must vanish. Some of these results are straightforward extensions of results in [JdgMnd20], but
several are new.

Let b− and b+ denote the distinct boundary rays of the sector S. Let c0 and c1 denote the respective Bessel
coefficients of u at the vertex of S. Let β denote the vertex angle of S, and let ν = π/β.

Lemma 3.1 (Compare Proposition 9.1 [JdgMnd20]). For each n, let pn be a critical point of un that lies in the
interior of Sn. If pn converges to the vertex of S, then c1 = 0. If, in addition, β < π, then c0 = 0.

Proof. Let βn be the angle of the sector Sn and let νn = π/βn. By performing rigid motions if necessary, we may
assume without loss of generality that the vertex S and each of Sn is 0 and that the boundary rays of Sn are
θ = 0, βn. Using (3) and the fact that sin(α) divides sin(kα) for each k, we find that

∂θun
(
r · eiθ

)
= −νn · rνn · sin(νn · θ) · (c1(n) · gνn(r) + O(rνn)) .

Thus, since pn = rn exp(iθn) is a critical point, 0 < θn < βn, and gν(0) ̸= 0, we find that c1(n) = O(rνnn ). In
particular, since un converges to u, we have c1 = limn→∞ c1(n) = 0.

From (3), we find

∂run
(
r · eiθ

)
= c0(n) · 2r · g′0(r2) + c1(n) · νn · rνn−1 · gνn(r2) · cos(νnθ) + O (rνn) .

Thus, since pn = rn exp(iθn) is a critical point, g′0(0) ̸= 0, and c1(n) = O(rνn), we find that c0(n) = O(r2(νn−1)) +
O(rνn−1). If β < π, then there exists ϵ > 0 so that for sufficiently large n, we have νn > 1 + ϵ. Hence c0 =
limn→∞ c0(n) = 0. □

Lemma 3.2 (Compare Lemma 9.2 [JdgMnd20]). For each n, let pn be a critical point of un that lies in the boundary
ray of Sn that converges to b−, and let qn be a critical point of un that lies in the boundary ray of Sn that converges
to b+. If the sequences pn and qn both converge to the vertex of S, then c1 = 0. If β < π, then we also have c0 = 0.

Proof. Let βn be the angle of the sector Sn. By performing rigid motions if necessary, we may assume without loss
of generality that the vertex S and each of Sn is 0 and that the boundary rays of Sn are θ = 0, βn. Thus, there
exist sequences rn and sn so that pn = rn and qn = sne

iβn .
From (3) we find that

∂run(r) = c0(n) · 2r · g′0(r2) + c1(n) · νn · rνn−1 · gνn(r2) + O
(
rνn+1 + r2νn−1

)
∂run

(
s · eiβn

)
= c0(n) · 2s · g′0(s2) − c1(n) · νn · sνn−1 · gνn(s2) + O

(
sνn+1 + s2νn−1

)
.

Since pn = rn and qn = sne
iβn are critical points, the radial derivative of un vanishes at these points, and hence

0 = c0(n) · 2rn · g′0(r2n) + c1(n) · νn · rνn−1
n · gνn(r2n) + O

(
rνn+1
n + r2νn−1

n

)
(9)

0 = c0(n) · 2sn · g′0(s2n) − c1(n) · νn · sνn−1
n · gνn(s2n) + O

(
sνn+1
n + s2νn−1

)
.(10)

Let aν(r) = 2g′0(r
2)/gν(r

2). Because, the functions g′0 and gν are continuous and positive near zero, so is aν . From
(9) and (10) we find that

(11) c0(n) ·
(
aνn(rn) · r2−νnn + aνn(sn) · s2−νnn

)
= O

(
r2n + s2n + rνnn + sνnn

)
,

and

(12) c1(n) ·
(
rνn−2
n

aνn(rn)
+

sνn−2
n

aνn(sn)

)
= O

(
rνnn + sνnn + r2νn−2

n + s2νn−2
n

)
.

It follows from (12) that c1(n) = O(r2n + s2n + rνnn + sνnn ). Since νn tends to ν > 0, we have c1 = limn→∞ c1(n) = 0.
It follows from (11) that c0(n) = O(rνnn + sνnn + r2νn−2

n + s2νn−2
n ). If β < π, then there exists ϵ > 0 so that

νn > 1 + ϵ and for sufficiently large n. Thus, for n sufficiently large, we have c0(n) = O(r1+ϵn + s1+ϵn + r2ϵn + s2ϵn ).
Therefore, c0 = limn→∞ c0(n) = 0. □

Lemma 3.3 (Compare Lemma 9.3 [JdgMnd20]). Let pn be a critical point of un and suppose that pn converges to
the vertex of S. If β < π/2, then c0 = 0. If β > π/2, then c1 = 0.
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Proof. By performing rigid motions if necessary, we may assume without loss of generality the boundary rays of
Sn are θ = 0 and θ = βn. By Lemma 3.1 passing to a subsequence, and applying a reflection across θ = βn/2 if
necessary, we may assume, without loss of generality, that pn = rn lies in the positive real axis. As in the proof of
Lemma 3.2 we have

(13) 0 = c0(n) · 2rn · g′0(r2n) + c1(n) · νn · rνn−1
n · gνn(r2n) + O

(
rνn+1 + r2νn−1

)
.

If β < π/2, then there exists ϵ > 0 so that νn > 2+ ϵ for n sufficiently large. Hence, since g′0(0) ̸= 0, it follows from
(13) that c0(n) = O(rϵn). It follows that c0 = 0.

From (13), we have c1(n) = O(r2−νnn ) + O
(
r2n + rνnn

)
. If β > π/2, then there exists ϵ > 0 so that ϵ < νn < 2−ϵ

for n sufficiently large. Hence, since gν(0) ̸= 0, it follows from (13) that c1(n) = O(rϵn). Thus c1 = limn→∞ c1(n) =
0. □

Lemma 3.4. Suppose that β ̸= π/2 and β < π. Suppose that for each n the sector Sn is bounded by the rays θ = 0
and θ = βn, and there exist 0 < rn ≤ sn such that ∂ru(rn) = 0 and ∂2ru(sn) = 0. If sn converges to zero as n tends
to infinity, then c0 = 0 = c1.

Proof. Because 0 < β < π and βn → β, there exists δ > 0 such that π · δ < βn < π · (1 + δ)−1 and hence
δ−1 > νn > νn − 1 > δ. From (3) we have

∂run(r) = c0(n) · 2r · g′0(r2) + c1(n) · νn · rνn−1 · gνn(r2) + O
(
rνn+1 + r2νn−1

)
(14)

∂2run (s) = c0(n) ·
(
2 · g′0(s2) + 4s2 · g′′0 (s2)

)
+ c1(n)νn(νn − 1)sνn−1gνn(s

2) + O
(
sνn + s2νn−2

)
.

Let

aν(r) =
2g′0(r

2)

ν · gν(r2)
and

bν(s) =
2g′0(s

2) + 4s2 · g′′0 (s2)
ν · gν(s2)

.

Because gν and its derivatives are positive and continuous for r near zero, the functions aν and bν are also positive
and continuous for small r. Note that aν(0)/bν(0) = 1.

Since ∂ru(rn) = 0 and ∂2ru(sn) = 0 we find from (14) that

0 = c0(n) · aνn(rn) · r2−νnn + c1(n) + O
(
r2n + rνnn

)
(15)

0 = c0(n) ·
bνn(sn)

νn − 1
· s2−νnn + c1(n) + O

(
s2n + sνnn

)
.

By subtracting we have

(16) c0(n) ·
(
aνn(r

νn) · r2−νn − bνn(sn)

νn − 1
· s2−νnn

)
= O

(
r2n + rνnn + s2n + sνnn

)
Suppose β > π/2, then ν < 2 and so since νn → ν there exists ϵ > 0 so that for sufficiently large n

(17)
1

νn − 1
· bνn(sn)
aνn(rn)

≥ 1 + ϵ.

Since rn ≤ sn, we have r2−νnn ≤ s2−νnn . Therefore, from (16) we find that

c0(n) · (−ϵ) · a(rn) · s2−νn = O
(
r2n + rνnn + s2n + sνnn

)
Thus, since rn ≤ sn we find that c0(n) = O(rνnn + sνnn + r2νn−2

n + s2νn−2
n ), and hence

(18) c0(n) = O
(
r1+δn + s1+δn + r2δn + s2δn

)
.

Therefore, c0 = limn→∞ c0(n) = 0.
Suppose β < π/2. Then since νn → ν > 2, there exists ϵ > 0 so that for sufficiently large n

(19) (ν − 1) · aνn(rn)
bνn(sn)

≥ 1 + ϵ.

Since r2−νnn ≥ s2−νn , from (16) one deduces that c0 = 0 in this case by arguing in a similar manner.
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To show that c1 = 0, we argue similarly. From (15) we find that

0 = c0(n) + c1(n) ·
rνn−2
n

aνn(rn)
+ O

(
r2n + rνnn

)
0 = c0(n) + c1(n) ·

(νn − 1) · sνn−2
n

bνn(sn)
+ O

(
s2n + sνnn

)
.

and hence by subtracting

c1(n) ·
(
rνn−2
n

aνn(rn)
− (νn − 1) · sνn−2

n

bνn(sn)

)
= O

(
r2n + rνnn + s2n + sνnn

)
.

Now argue as was done to show that c0 = 0. In particular, in the case β < π/2 use (19), and in the case β > π/2
use (17).

□

Corollary 3.5. Suppose β < π and β ̸= π/2. Suppose that for each n, the points pn and qn are distinct critical
points. If pn and qn both converge to the vertex of S, then c0 = 0 = c1.

Proof. By applying rigid motions we may assume that Sn is bounded by the rays θ = 0 and θ = βn. By Lemma
3.1 and Lemma 3.2, it suffices to assume that pn and qn lie in the same boundary ray, and by reflecting if necessary
about θ = βn/2, we may assume that both pn and qn are real. By relabeling we may assume that pn < qn. By
assumption ∂r(pn) = 0 = ∂r(qn), and so Rolle’s theorem implies that there exist sn such that pn ≤ sn ≤ qn and
∂2r (sn) = 0. The claim now follows from Lemma 3.4. □

Corollary 3.6. Let S be a sector with angle β < π and not equal to π/2, and let u : S → R be a Neumann
eigenfunction. If the vertex v is an accumulation point of the critical points of u, then c0 = 0 = c1.

Proof. Apply Corollary 3.5 with Sn = S and un = u. □

Lemma 3.7. Suppose β < π and β ̸= π/2. If pn is a degenerate critical point of un that converges to the vertex of
S, then c0 = 0 = c1.

Proof. By applying rigid motions we may assume that Sn is bounded by θ = 0 and θ = βn. By Lemma 3.1, by
passing to a subsequence, and by applying a reflection across θ = βn/2 if necessary, we may assume that pn lies in
the boundary ray θ = 0. That is, pn = rn > 0 and ∂run(rn) = 0.

Since un satisfies Neumann conditions along the real axis, and pn is a degenerate critical point we have either
∂2xun(rn) = 0 or ∂2yun(pn) = 0. If ∂2xun(rn) = 0, then Lemma 3.4 with sn = rn implies the claim.

Suppose then that ∂2yun(pn) = 0. Along the ray θ = 0 we have ∂2y = r−1 · ∂r + r−2 · ∂2θ . Since ∂run(rn) = 0, we

have ∂2yun(rn) = ∂2θun(rn), and so

0 =
(
∂2θun

)
(rn) = −c1(n) · ν2n · rνn · g0(r2n) + O(r2νnn ).

Since un satisfies the first equation in (13) we find that

0 =
(
∂2yun

)
(rn) = 2c0(n) · g′0(r2n) + O

(
rνnn + r2νn−2

n

)
.

Since β < π, there exists ϵ > 0 so that νn > 1 + ϵ for suficiently large n. Since g0 and its derivative do not vanish
at zero, it follows that c0 = limn→∞ c0(n) = 0 and c1 = limn→∞ c1(n) = 0.

□

Remark 3.8. Note that in the proof of Lemma 3.7 we used the condition β ̸= π/2 only in the case that ∂2run(pn) = 0.
Indeed, the proof shows that if ∂2θun(pn) = 0, then c0 = 0 = c1 even if π = β/2.

4. A Poincaré-Hopf formula for critical points of eigenfunctions on a polygon

In this section, we provide a variant of the the classical-Poincaré Hopf index theorem for the gradient of Laplace
eigenfunctions on a planar polygonal domain P . The discussion will focus on eigenfunctions satisfying Neumann
boundary conditions, but the methods apply to give variants in the contexts of Dirichlet and mixed boundary
conditions.

Each Neumann eigenfunction u : P → R extends continuously to the boundary ∂P , and this extension is smooth
at each nonvertex point in ∂P . Let p lie in the closure P of P . Suppose that there exists a deleted disc neighborhood
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Ḋ of p that contains no zeros of ∇u. Then the closure of each component of Ḋ∩{z : u(z) = u(p)} is an arc.4 If such
an arc contains p, then we will say that the arc emanates from p. Let n be the number of arcs in {z : u(z) = u(p)}
that emanate from p, and define

ind(u, p) =

{
1 − 1

2 · n if p ∈ P
1 − n if p ∈ ∂P.

Note that if ind(u, p) ̸= 0 and p is not a vertex of P , then ∇u(p) = 0.5 If p is a vertex and ind(u, p) ̸= 0, then we
will regard p as a critical point of u.

Definition 4.1. A point p ∈ P will be called a critical point of u if either

• p is not a vertex and ∇u(p) = 0, or
• p is a vertex and ind(u, p) ̸= 0.

Assumption 4.2. In what follows we will assume that each critical point p is isolated. In particular, index ind(u, p)
is well-defined for each p.

In [JdgMnd22b], we show that rectangles are the only simply-connected polygons whose second Neumann eigen-
functions have infinitely many critical points. Hence the assumption reduces to the assumption that the polygon is
not a rectangle in the simply-connected case.

Let χ(S) denote the Euler characteristic of a surface S.6 For example, if S is a polygonal domain obtained by
removing k disjoint simply connected polygons from the interior of a simply connected polygon, then χ(S) = 1− k.
Let crit(u) denote the set of critical points of u including the vertices v such that ind(u, v) ̸= 0. The following is a
variant of the classical Poincaré-Hopf formula [Taylor].

Proposition 4.3 (Index formula). Let u : P → R be a Neumann eigenfunction such that the set crit(u) is finite.

2 · χ (P ) =
∑

p∈ crit(u)∩P

2 · ind(u, p) +
∑

p∈ crit(u)∩∂P

ind(u, p).

Proof. Let DP be the ‘double of P ’, the closed surface without boundary obtained by gluing two disjoint copies of
P along their respective boundaries. The surface DP has a natural real-analytic structure on the complement of
the set C of ‘cone points’ corresponding to the vertices of P . Because u is a Neumann eigefunction, u extends to
a real-analytic function ũ : DP \ C → R that is invariant under the isometric involution that exchanges the two
copies of P . For each p ∈ DP , we define ind(ũ, p) = 1 − n

2 . Because u is a Neumann eigenfunction, we find that
ind(ũ, p) = ind(u, p) for p ∈ P (including vertices).

Let A be the union of the level sets of ũ that contain critical points of ũ. The complement of A consists of
topological annuli, and hence, by the Euler-Poincaré formula, χ(DP ) = χ(A). On the other hand, the number of
edges in A equals 1

2

∑
p np where np is the valence of the graph A at p. It follows that χ(DP ) =

∑
crit(ũ) ind(u, p)

where crit(ũ) includes p ∈ C such that ind(ũ, p) ̸= 0. We have χ(DP ) = 2 ·χ(P ) and for every interior critical point
of u we have two critical points of ũ with the same index. The claimed formula follows. □

Remark 4.4. There are also variants of Proposition 4.3 in the contexts of Dirichlet and mixed boundary conditions.
For example, if u satisfies Dirichlet conditions, then formula (4.3) holds true if one redefines ind(u, p) = 2 − k for
each for p ∈ ∂P .

Remark 4.5. The classical Poincaré-Hopf theorem applies to a smooth vector field X on an oriented closed surface
S that has finitely many critical points. If γ is a simple oriented loop that encloses at most one zero p of X, then
the restriction of X/|X| to γ defines a map from the unit circle to itself. The index of X at p is the degree of this
self-map of the circle. (See, for example, [Taylor] §1.10.) If X = ∇f , then this index equals 1 − k

2 where k is the

number of components of f−1(f(p))\{p}. In the context of a vector field X, the Poincaré-Hopf index formula gives
that the sum of the indices of the zeros of X equals the Euler characteristic of S.

Proposition 4.6. The point p ∈ P is a local extremum if and only if ind(u, p) = 1.

4If the closure of some component were a loop, then the loop would bound a disk that contained a critical point. In this paper we
use ‘arc’ to mean an embedded interval.

5The converse is not true, namely there may be critical points with index equal to zero. See §5.
6See for example [Taylor] or [Thurston].
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Proof. By Assumption 4.2, each critical point is isolated. We have ind(u, p) = 1 if and only if there exists a

punctured disc neighborhood Ḋ of p so that u(z) ̸= u(p) for each z ∈ Ḋ. Since u is continuous, we have either

u(z) > u(p) for all z ∈ Ḋ or u(z) < u(p) for all z ∈ Ḋ. This occurs if and only if p is a local extremum of u. □

Suppose that v is a vertex of P that is not a limit point of the zeros of ∇u. The index ind(u, v) is determined
by the Bessel expansion (3) of u near v.

Lemma 4.7. Let P be a polygon, let v be a vertex of P with angle β, and let u be a Neumann eigenfunction on P .
Let k ≥ 1 be the smallest positive integer so that ck ̸= 0 and suppose that v is a critical point of u.

(i) If u(v) = 0 or β > k · π2 , then ind(u, v) = 1− k.
(ii) If u(v) ̸= 0 and β < k · π2 , then ind(u, v) = 1.
(iii) If u(v) ̸= 0 and β = k · π2 , then 1− k ≤ ind(u, v) ≤ 1.

In particular, if β ̸= π/2 or 3π/2, then ind(u, v) equals either 1 or 1− k.

A similar statement can be derived in the cases of Dirichlet or mixed boundary conditions.

Proof. Without loss of generality, v = 0 and the sides adjacent to v bound the sector 0 < θ < β.
If u(0) = 0 or β > k · π2 , then from (3) there exist b ̸= 0 and a so that

u
(
r · eiθ

)
= a + b · rkν · cos(kνθ) + o

(
rkν

)
.

Using, for example, the implicit function theorem, one finds that there exists a disk neighborhood D of 0 such that
D ∩ u−1(u(v)) \ {v} consists of k arcs each with an endpoint at v. It follows that ind(u, 0) = 1− k.

Suppose u(v) ̸= 0 and β < k · π2 . Then k · ν > 2 and hence from (3) we find that

u (z) = a + b · r2 + o(r2)

where a ̸= 0 ̸= b. Hence v is a local extremum of u, and so by Proposition 4.6, ind(u, v) = 1.
If u(v) ̸= 0 and β = kπ/2, then from (3) we have

u
(
r · eiθ

)
= a + r2 (b + c · cos(kνθ)) + o

(
r2
)

where a, b and c are nonzero constants. If b = −c, then ind(u, v) will depend on the o(r2) error term. In this case
1− k ≤ ind(u, v) ≤ 1. □

Corollary 4.8. Suppose β is not a multiple of π/2.

(1) If c1 = 0, then ind(u, v) ̸= 0.
(2) If β > π/2, then c1 = 0 if and only if ind(u, v) ̸= 0.

Proof. Let k be as in the statement of Lemma 4.7. If c1 = 0, then k > 1, and hence Lemma 4.7 implies that
ind(u, v) ̸= 0. If β > π/2 and c1 ̸= 0, then k = 1 and we are in case (i) of Lemma 4.7. Thus, ind(u, v) = 0. □

Remark 4.9. In the case that β is a multiple of π/2 and u(v) ̸= 0, part (iii) of Lemma 4.7 provides only an inequality
for ind(u, v). Yet, one can determine the index in finitely many steps. In particular if k · ν = 2, then

u(z)− u(v) = r2 · (a + cos(2θ)) + o(r2)

where a = (c0 · g′0(0))/(ck · g2(0)). If |a| > 1, then ind(u, v) = 1 and if |a| < 1, then ind(u, v) = 1 − k. If |a| = 1,
then by considering more terms of the Bessel expansion, one can identify ind(u, v).

If p is an isolated critical point of an eignfunction u that lies in the interior of a polygon P , then ind(u, p) equals
the degree of the mapping ∇u/|∇u| ◦ γ as described in Remark 4.5. If p lies in the interior of a side of P , then one
may reflect a Neumann eigenfunction across the side to ũ, and then find that ind(u, p) equals degree of the map
∇ũ/|∇ũ| ◦ γ.

If p is a vertex, we may also interpret ind(u, v) in terms of the degree of the self-map of the circle induced by a
vector field. Indeed, let D be a disc centered at p that intersects no sides of P other than the side(s) adjacent to
p and so that D \ {p} contains no critical points of u other than possibly p. By applying a rigid motion we way
assume that p = 0 and that D∩P lies in the sector S bounded by the rays θ = 0 and θ = β. Moreover, by rescaling
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if necessary, we may assume that D is the unit disk. The map z 7→ z
β
π maps H = {z ∈ C : |z| < 1 and y > 0} to

the sector D ∩ P . In particular, the function w(z) = u
(
z

1
ν

)
is defined on H. If u is given by (3), then

(20) w
(
r · eiθ

)
=

∑
j=0

cj · rj · gj·ν
(
r

2
ν

)
· cos(j · θ).

We may extend w smoothly to D \ {0} by setting w(z) = w(z).

Lemma 4.10. The degree of the restriction of ∇w
|∇w| to the unit circle equals 2 ·

∑
ind(u, q) where the sum is over

critical points q of u that lie D.

Proof. Suppose q ̸= 0 is a critical point of u. If q lies in the interior of P , then q corresponds to two critical points
q+ and q− of w which have the same indices as q. By Remark 4.5, since w is smooth at q±, the index ind(w, q±)
equals the degree of the restriction of ∇w/|∇w| to a small circle centered at q±. If q ̸= 0 lies on the boundary of P ,
then q corresponds to a single critical point q′ of w, and ind(w, q′) equals the degree of ∇w/|∇w| on a small circle
centered at q′. By choosing disjoint circles, and applying a standard argument7, we find that it suffices to assume
that u has no critical points in D \ {0}.

Since u has no critical points in D \ {0}, the function w has no critical points in D \ {0} In particular, since ∂θw
vanishes on the real line, it follows that w(z) ̸= w(0) for each z ̸= 0 on the real axis. Hence the number of arcs in
{z : w(z) = w(0)} that emanate from 0 equals twice the number of arcs in {z : u(z) = u(0)} that emanate from 0.
Thus, to complete the proof, it suffices to show that the degree of ∇w

|∇w| ◦ γ where γ is the unit circle equals 1− n/2

where n is the number of arcs of {z : w(z) = w(0)} that emanate from 0.
Let h(z) := w(z)− w(0) and let k be the smallest positive interger such that ck ̸= 0. Then

∂θh
(
r · eiθ

)
= −ck · k · rk−1 · gk·ν

(
r

2
ν

)
· sin(k · θ) + O

(
rk
)
,

and so there exists r0 > 0 so that if 0 < r ≤ r0, then the set {θ : ∂θh
(
r · eiθ

)
= 0} consists of exactly 2k elements,

θ0(r), . . . , θ2k−1(r). Using the implicit function theorem, we find that, for each j, the map r 7→ θj(r) is smooth.
By relabeling if necessary, we may assume that limr→0 θj(r) = j · π/k. The function h has no critical points in

D \ {0}, and so the degree of ∇h/|∇h| ◦ γ equals the degree of the map ∇h/|∇h| ◦ γ0 where γ0 is the standard
counterclockwise parameterization of r = r0.

Choose a homeomorphism ψ : D → D that is isotopic to the identity map, that is smooth away from 0, and that

maps each ray θ = j · π/k to the arc θj . Then if we define h̃(z) = h ◦ψ, then the degree of ∇h̃/|∇h̃| ◦ γ0 equals the

degree of ∇h/|∇h| ◦ γ0 and ind(h̃, 0) = ind(h, 0).

Let j ∈ {1, . . . , 2k} and let θj := jπ/k. Since h̃ has no critical points in D \ {0}, the mean value theorem implies

that r 7→ |h̃
(
rei·θj

)
| is strictly increasing and thus h̃

(
rei·θj

)
̸= 0 for each r ∈ (0, r0]. Let ϵj ∈ {+1,−1} denote the

sign of the function r 7→ h̃
(
rei·θj

)
. Note that ϵj is also the sign of ∂rh̃

(
rei·θj

)
.

The number arcs in {z : h̃(z) = 0} emanating from 0 equals the number of j ∈ {1, . . . , 2k} such that ϵj ̸= ϵj+1.

Indeed, for each fixed r, the restriction of θ 7→ h̃
(
reiθ

)
to the interval Ij := [θj , θj+1] is monotone, and hence

θ 7→ h̃
(
reiθ

)
assumes the value 0 at most once, and it assumes the value 0 if and only if ϵj ̸= ϵj+1. In other words,

ind(h̃, 0) equals the number of j such that ϵj ̸= ϵj+1.

To compute the degree of ∇h̃/|∇h̃| ◦ γ0, we first regard this map as a map X : R/2πZ → R/2πZ. In particular,

for each θ there exists a unique X(θ) so that ∇h̃/|∇h̃|(r · eiθ) corresponds to the point eiX(θ) in the unit circle. In

other words, X(θ) is the angle between the vector ∂x and ∇h̃ measured counterclockwise.

We have ∇h̃ = ∂rh̃ · ∂r + r−2 · ∂θh̃ · ∂θ. Since ∂θh̃(reθj ) = 0 we have ∇h̃ = ∂rh̃ · ∂r, and so

X(θj) =

{
θj mod 2π if ϵj = +1,

θj + π mod 2π if ϵj = −1.

We also have ∂θh̃(r0e
iθ) > 0 if and only if X(θ) ∈ (θ, θ + π) mod 2π, and ∂θh̃(r0e

iθ) < 0 if and only if X(θ) ∈
(θ − π, θ) In particular, we have either X(θ) ∈ [θ, θ + π] for each θ ∈ Ij or X(θ) ∈ [θ − π, θ] for each θ ∈ Ij .

If ϵj = +1 = ϵj+1, then X(θj) = θj and X(θj+1) = θj+1 and either θ ≤ X(θ) ≤ θ + π for each θ ∈ Ij or
θ − π ≤ X(θ) ≤ θ for each θ ∈ Ij . It follows that the restriction of X to Ij is homotopic to the identity map

7See for example, the proof of Proposition 20.2 in [Taylor]
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rel endpoints. Similarly, if ϵj = −1 = ϵj+1, then the restriction of X to Ij is homotopic to the identity map rel
endpoints.

If ϵj = −1 and ϵj+1 = +1, then ∂θh̃(r0e
iθ) ≥ 0 for each θ ∈ Ij , and so X(θ) ∈ [θ, θ + π] mod 2π. We also have

X(θj) = θj + π mod 2π and X(θj+1) = θj+1 mod 2π. It follows that X is homotopic rel endpoints to the linear
map Y +

j : Ij → R/2πZ defined by

Y +
j (θ) = (1− k) · (θ − θj) + θj + π mod 2π.

Similarly, if ϵj = +1 and ϵj+1 = −1, then one finds that X|Ij is homotopic rel endpoints to the map Y −
j : Ij →

R/2πZ defined by

Y −
j (θ) = (1− k) · (θ − θj) + θj mod 2π.

Using the identity map on Ij when ϵj = ϵj+1 and the maps Y +
j and Y −

j when ϵj ̸= ϵj+1, one constructs a piecewise

linear map Y : R/2πZ → R/2πZ that is homotopic to X. An elementary argument shows that Y is in turn
homotopic to the map Z defined by Z(θ) = (1 − n

2 ) · θ mod 2π where n is the number of j such that ϵj ̸= ϵj+1.
The claim follows. □

Remark 4.11. If the angle β at v is not a multiple of π/2, then k · ν ̸= 2, and the proof of Lemma 4.10 can be
significantly shortened. Indeed, one can use expansion (20) as in the proof of Lemma 4.7. However, if β = π/2 or
3π/2, then using expansion (20) is more cumbersome. See Remark 4.9.

Definition 4.12. Let Pk be a sequence of n-gons and let P be an n-gon. We will say that Pk converges to P if and
only if there exists a sequence of homeomorphisms φk : P → P k that are C2 diffeomorphisms on the complement
of the vertices such that φk converges uniformly in C2 to the identity map on each compact subset of P that does
not include the vertices. Given continuous functions uk : Pk → C and u : P → C, we will say that uk converges to
U if and only if uk ◦ φk converges to u.

Remark 4.13. Our notion of convergence requires that the number, n, of vertices be constant. On the other hand,
we will sometimes want to analyze a sequence Pk of polygons with n vertices converging to a polygon P with n− 1
vertices. In this case, we add a vertex to some side of P to obtain an n-gon P ′. The ‘new’ polygon P ′ then has n
vertices and the ‘new’ vertex has angle π. Definition 4.12 can now be used to test the convergence of Pk to P ′.

It is important to note that our notion of convergence precludes the possibility that two distinct vertices of Pk
converge to a single vertex of P ′. However, it would be interesting to analyze the convergence of eigenfunctions in
this case.

Proposition 4.14 (Stability of the total index). Suppose that Pn is a sequence of polygons that converges to P ,
and suppose that un : Pn → R is a sequence of Neumann eigenfunctions that converge to a Neumann eigenfunction
u : P → R. Let p ∈ P and suppose that D ⊂ C is an open disk neighborhood of p such that ∂D contains no zeros
of ∇u. Let A (resp. An) denote the set of critical points of u (resp. un) that lie in D. If A and An are finite, then
for each n sufficiently large ∑

q∈A
ind(u, q) =

∑
q∈An

ind(un, q).

Proof. The gradient ∇un converges to ∇u, and so the sets An converges to A.
First we suppose that p lies in the interior of P . Let γ be a counterclockwise parameterization of ∂D. By Proposi-

tion 20.2 in [Taylor], we have that
∑
q∈A ind(u, q) = deg(∇u/|∇u| ◦γ) and

∑
q∈An

ind(un, q) = deg(∇un/|∇un| ◦γ).
But the vector field ∇un/|∇un| ◦γ converges to deg(∇u/|∇u| ◦γ), and hence the degrees converge. Since the degree
is an integer invariant, the degrees coincide for all sufficiently large n.

If p lies on the boundary of P , the we apply Lemma 4.10. We have
∑
q∈A ind(u, q) = deg(∇w/|∇w| ◦ γ) and∑

q∈An
ind(un, q) = deg(∇wn/|∇wn| ◦ γ) where w and wn are constructed as in (20). Since wn converges to w, the

degree of ∇wn/|∇wn| ◦ γ converges to the degree of ∇w/|∇w| ◦ γ. The claim the follows from Lemma 4.10. □

Lemma 4.15. Let Pn be a sequence of polygons that converges to a polygon P and let un : Pn → R be a sequence
of Neumann eigenfunctions that converge to a Neumann eigenfunction u : P → R. If u has finitely many nonzero
index critical points, then there exists N such that if n > N , then the number of nonzero index critical points of un
is greater than or equal to the number of critical points of u.
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Proof. Let p be a nonzero index critical point of P . In particular, p is isolated, and so there exists a disk neighborhood
Dp of p that contains no critical points of u other than p. Since ind(u, p) ̸= 0, Proposition 4.14 implies that, for
sufficiently large n, at least one nonzero index critical points of un lies in Dp. Since the various disks Dp are disjoint,
the claim follows. □

Lemma 4.16. Let u be a nonconstant Neumann eigenfunction on a polygon P . If the set of critical points of u is
discrete, then each local extremum p of the restriction u|∂P is a critical point of u.

Proof. Suppose that p lies in the interior of a side e of p. Since p is a local extremum of u|∂P , we have Leu(p) = 0.
Thus, since u satisfies Neumann conditions at p, we have ∇u = 0.

□

5. Index zero critical points on a side of a polygon.

In this section u is a Neumann eigenfunction on a polygon P , and p is an isolated critical point of u that lies in
a side e of P . We show in Lemma 5.1 that if ind(u, p) = 0, then the level set {z : u(z) = u(p)} is a ‘cusp’ that is
tangent to e (see Lemma 5.1). We then use this to show that if the nodal set of Xu, where X is either a rotational
or constant vector field, has a degree 1 vertex, then the vertex is a critical point with nonzero index (Proposition
5.2).

By applying a rigid motion to P we may assume that p = 0 and that the side that contains p lies in the real axis.

Lemma 5.1. Suppose that p is an index zero critical point of a Neumann eigenfunction u that belongs to the side
e. Then there exist real-analytic functions c : C → R and ρ : R → R and an odd integer k ≥ 3 so that c(0) ̸= 0,
ρ(0) ̸= 0, and

(21) u(z) = u(0) + c(z) ·
(
y2 − xk · ρ(x)

)
.

Proof. Because the index of the critical point p of u equals zero, the Hessian of u at p has exactly one nonzero
eigenvalue. Indeed, the Morse lemma implies that nondegenerate critical points have Poincaré-Hopf index equal to
1 or −1. Hence p is degenerate and zero is an eigenvalue of the Hessian of u at p. If the associated eigenspace were
two-dimensional, then ∆u(p) = 0, and so p would be a nodal critical point. But the result of [Chn76] shows that a
nodal critical point cannot have index zero. Therefore, zero is not the only eigenvalue of the Hessian.

The eigenspace E that corresponds to the nonzero eigenvalue is invariant under the reflection z 7→ z. Thus E is
either the real or the imaginary axis. We claim that E is not the real axis. Indeed, suppose to the contrary that E
is the real axis. Then ∂xu(0) = 0 but ∂2x u(0) ̸= 0. The Weierstrass preparation theorem applies to provide unique
real-analytic functions a, b1, and b2 defined near 0, so that a(0) ̸= 0, b1(0) = 0 = b2(0), and

u(z) − u(0) = a(z) ·
(
x2 + b1(y) · x + b2(y)

)
for z near p = 0. Since the factorization is unique and u(z) = u(z), we have bj(y) = bj(−y) for j = 1, 2. In
particular, the discriminant D(y) := b1(y)

2 − 4 · b2(y) is an even function. If D were to vanish on a neighborhood
of 0, then we would have u(z)− u(0) = a(z) · (x+ b1(y)/2)

2 and hence

∇u(z) =

(
x+

b1(y)

2

)2

· ∇a(z) + 2a(z) ·
(
x+

b1(y)

2

)
· ∇

(
x+

b1(y)

2

)
.

Thus, ∇u would vanish along the level set of u that contains p = 0, but by assumption p = 0 is an isolated zero of
∇u. Since D is even and ind(u, 0) ̸= 1, it follows that D(y) > 0 for y ̸= 0 sufficiently small, and hence there exists
a neighborhood U of p = 0 so that the intersection of u−1(u(p))−{p} and U consists of four arcs. This contradicts
the assumption that p is a zero index critical point of u.

Therefore E coincides with the imaginary axis. By use of the Weierstrass preparation theorem we find that

(22) u(z) − u(0) = a(z) ·
(
y2 + b1(x) · y + b2(x)

)
for unique real-analytic functions a, b1, and b2 defined near 0 where a(0) ̸= 0 and b1(0) = 0 = b2(0). Since the
factorization is unique and u(z) = u(z), we find that b1(x) = 0. Because p is an isolated critical point, there exists
ϵ > 0 so that b2(x) ̸= 0 if 0 < |x| < ϵ. We claim that, moreover, b2(x) · b2(−x) < 0 if 0 < |x| < ϵ. Indeed, otherwise
b2(x) · b2(−x) > 0, and thus from (22) we find that there exists a neighborhood U of p = 0 so that the intersection
of u−1(u(p))−{p} and U consists of four arcs. This contradicts the assumption that p is a zero index critical point
of u.



14 CHRIS JUDGE AND SUGATA MONDAL

Since b2(x) · b2(−x) < 0 the first nonzero term in the Taylor series of b2 about zero has odd degree k, and since
∂xu(0) = 0 we also have k ≥ 3. The claim follows. □

Proposition 5.2. Let X be either a constant vector field or a rotational vector field. If p is a degree 1 vertex of
Z(Xu) that is not a vertex of P , then p is a critical point with nonzero index.

Proof. Since p is not a vertex, p lies in the interior of a side e. Since p is a degree 1 vertex of Z(Xu), the vector
X(p) is independent of the normal vector to ∂P at p, and in particular p is a critical point of u. It remains to show
that p has nonzero index.

As above, we may suppose without loss of generality that e lies in the real-axis and that p = 0. We will consider
the case in which X is a constant vector field of the form X = cos(ψ)∂x + sin(ψ)∂y where ψ ̸= π/2 mod π.

Suppose to the contrary that the index of p were to equal zero. Then by Lemma 5.1, near p, the function u would
satisfy (21) where c(0) ̸= 0 ̸= ρ(0) and k ≥ 3 is odd. Direct computation shows that ∂yXu(0) = 2 cos(ψ) · c(0) and
hence ∂yXu(0) ̸= 0. Thus, by the implicit function theorem, there exists a function f : (−ϵ, ϵ) → R so that

(23) Xu (x+ i · f(x)) = 0.

From (21), we find that for each real x

(24) (Xu)(x) = − cos(ψ) · c(0) · k · xk−1 + O(|x|k).
By repeatedly differentiating (23) with respect to x and using (24) we find that ∂jxf(0) = 0 for each j < k − 1 and
∂k−1
x f(0) ̸= 0. Since k − 1 is even and greater than 0, the function f is of one sign in a deleted neighborhood of

0. Thus, there exists a neighborhood U of p = 0 such that (U ∩ Z(Xu)) \ {p} intersects P in either no arcs or two
arcs. Hence p is not a degree 1 vertex, a contradiction. □

The following Lemma follows from the discussion in §7 of [JdgMnd20]. We provide a statement and proof for
the convenience of the reader.

Lemma 5.3. Let u be a second Neumann eigenfunction on a polygon P , and let p be an index zero critical point
that lies in the side e. If Le is a constant vector field that is parallel to e, then Z(Leu) intersects the interior of P
and has at least two degree 1 vertices in ∂P \ e.

Proof. By Lemma 5.1, u has the expression

u(x, y) = u00 + u02 · y2 + u30 · (x3 − 3xy2) + o(|z|3)
in a neighborhood of p, where u02 ̸= 0. If u30 = 0 then Proposition 7.4 of [JdgMnd20] provides the claim. If u30 ̸= 0
then the first paragraph of Proposition 7.6 of [JdgMnd20] provides the claim. □

6. Critical points of second Neumann eigenfunctions on simply connected polygons

In this section, we restrict attention to a polygon P that is simply connected and to an eigenfunction u that is
associated to the second Neumann eigenvalue.

Proposition 6.1. The nodal set Z(u) is a simple arc whose intersection with ∂P consists of its two endpoints.
Moreover, the endpoints of this arc lie in distinct sides of P , and Z(u) does not contain any critical point of u.

Proof. The first statement is a well-known consequence of Courant’s nodal theorem and Polya’s inequality.8 The
second statement follows from Lemma 3.3 [JdgMnd20] and Theorem 2.5 in [Chn76]. □

Proposition 6.2. Let p be a critical point p of a second Neumann eigenfunction u that is not a vertex. Then the
index ind(u, p) equals either 1, 0, or −1.

Proof. Let ũ be the lift of u to the doubleDP , and let p̃ ∈ DP correspond to p. If ind(u, p) < −1, then more than four
arcs in ũ−1(ũ(p̃)) emanate from p̃. It follows that, in the natural coordinates at p̃, we have ũ(z)− ũ(p̃) = o(|z− p̃|2).
In particular, the degree two homogeneous polynomial h2 consisting of second order terms in the Taylor expansion
of ũ at p vanishes indentically. But (∆h2)(p̃) = µ · ũ(p̃) and so u(p̃) = 0. This contradicts Proposition 6.1. □

Next we consider the possible indices of a critical point of u that lies at a vertex of P . Let ck be the coefficient in
the Bessel expansion (3) at a point p ∈ ∂M . The following should be compared with Corollary 5.3 in [JdgMnd20].

8See, for example, Theorem 5.2 [JdgMnd20].
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Proposition 6.3. Let p ∈ ∂P . Either c0 ̸= 0 or c1 ̸= 0.

Proof. If c0 = 0 = c1, then by inspecting (3) one finds that at least two nodal arcs emanate from p. This contradicts
Proposition 6.1. □

Corollary 6.4. Let v be a vertex whose angle β is not a multiple of π/2.

(1) If c0 = 0, then ind(u, v) = 0.
(2) If β < π/2, then c0 ̸= 0 if and only if v is a local extremum.
(3) If β < π and c1 = 0, then v is a local extremum.
(4) If π/2 < β < π, then c1 = 0 if and only if v is a local extremum.
(5) If β < π, then ind(u, v) = 0 or ind(u, v) = 1.

Proof. Let k be the smallest positive integer such that ck ̸= 0. If c0 = 0, then by Proposition 6.3, we have c1 ̸= 0,
and hence by Lemma 4.7 we have ind(u, v) = 0.

If β < π/2 and c0 ̸= 0, then we are in case (ii) of Lemma 4.7, and hence ind(u, v) = 1. By Proposition 4.6 we
have ind(u, v) = 1 if and only if v is a local extremum.

Suppose that π/2 < β < π. If c1 = 0, then Proposition 6.3 implies that c0 ̸= 0, and so part (ii) of Lemma 4.7
implies that ind(u, v) = 1. If c1 ̸= 0, then part (i) of Lemma 4.7 implies that ind(u, v) = 0. □

Corollary 6.5. Suppose that v is an acute vertex of P contained in the side e. If v is not a local extremum, then
Z(Leu) has an arc that ends at v.

Proof. This follows from Corollary 2.3 and Corollary 6.4. □

7. No hot spots on certain polygons with two acute vertices

Bañuelos and Burdzy [Bnl-Brd99] used probabilistic methods to show that the second Neumann eigenfunction
u of an obtuse triangle has no interior critical points. In [JdgMnd20] [JdgMnd22a], we used a variational approach
to show that the two acute vertices are the only critical points of u and hence they are the global extrema of u. In
this section, we extend this latter result to a large class of n-gons that have two acute vertices. At this end of the
section we identify this class of polygons as those that satisfy the Lip-1 condition of [AtrBrd04] and which have no
orthogonal sides.

Lemma 7.1. Let u be a second Neumann eigenfunction on a simply connected polygon P with at least one acute
vertex. If u has an interior critical point, then either u has at least four nonzero index critical points or there is a
side e such that Z(Leu) has an arc that ends at a vertex of P .

Proof. Suppose that for each side e, the nodal set Z(Leu) does not have an arc that ends at a vertex. Thus, if v
is a vertex and e is a side containing v, then Corollary 2.3 implies that the leading Bessel coefficient of u at v is
nonzero. In particular, each acute vertex has index +1 by Corollary 6.4, and each obtuse vertex is not a critical
point by Proposition 4.8.

Since u has a critical point in the interior of P , for any side e, the nodal set Z(Leu) has at least two degree 1
vertices in ∂P . Since Z(Leu) does not have an arc that ends at a vertex of P , each of the degree one vertices of
Z(Leu) is a non-vertex point on ∂P . By Proposition 5.2, each of these degree 1 vertices is a nonzero index critical
point of u.

Thus, since P has at least one acute vertex, u has at least three nonzero index critical points in ∂P . Since the
obtuse vertices are not critical points, Proposition 6.2 implies that each critical point of u that lies in ∂P has index
equal to 1, 0 or −1. Thus, it follows from Proposition 4.3 that the number of nonzero index critical points of u that
lies on ∂P is even. In particular, u has at least four nonzero index critical points on ∂P . □

In the following we consider paths Pt of polygons with n vertices where the topology on the space of n-gons
is given by Definition 4.12. Recall from Remark 4.13 that, by adding a vertex to the side of a polygon, we can
consider a polygon with n− 1 vertices as a polygon with n vertices. For example, a triangle T may be regarded as
a quadrilateral if we declare that some point p on a side of T is a vertex that has angle π.

Let ut be a path of second Neumann eigenfunctions associated to the path Pt. For each t, let V (t) denote the
number of vertices v of Pt with angle not equal to π such that there exists a side e of Pt so that an arc in Z(Leut)
ends at v. Let S(t) denote the number of nonzero index critical points of ut.
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Lemma 7.2. Suppose that Pt is a path of n-gons such that no two sides of Pt are orthogonal and Pt has exactly
two acute vertices for each t ∈ [0, 1]. Let ut be an associated path of eigenfunctions. If S(0) ≥ 3 or V (0) ≥ 1, then
either S(1) ≥ 3 or V (1) ≥ 1.

Proof. It suffices to show that the set, A, of t ∈ [0, 1) such that either S(t) ≥ 3 or V (t) ≥ 1 is both open and closed
in [0, 1).

(A is open) If S(t) ≥ 3, then Lemma 4.15 implies that there exists ϵ > 0 such that if |s− t| < ϵ, then S(s) ≥ 3.
Hence, to prove openness, it suffices to assume that V (t) ≥ 1, and show that there exists ϵ > 0 so that if |s− t| < ϵ
then either V (s) ≥ 1 or S(s) ≥ 3.

If V (t) ≥ 1, then there exists a vertex v of Pt, a side e of Pt, and an arc in Z(Leu) that ends at v.
If the leading coefficient at v is nonzero then for s near t the leading coefficient at the corresponding vertex is

also nonzero. Since no two sides of Pt are orthogonal and since the corresponding edge and sector vary continuously
in s, we find from Lemma 2.1 that V (s) ≥ 1 for each s near t. Therefore, we may assume that there exists a vertex
v such that the leading coefficient of ut at v equals zero.

We may assume without loss of generality that v is an acute vertex. Indeed, if v were obtuse with c1(t) = 0,
then Lemma 4.7 would imply that v is a critical point with nonzero index. If c0(t) were not to vanish at each of
the two acute vertices, then Lemma 4.7 would imply that each of these vertices have index equal to one.

Hence, S(t) ≥ 3, and so S(s) ≥ 3 for s near t by Lemma 4.15. Thus, we may assume that v is acute.
Suppose that c0(t) = 0 at an acute vertex v. Corollary 6.4 implies that ind(u, v) = 0. By Proposition 4.16, the

eigenfunction ut has at least two nonzero index critical points. Thus, it follows from Lemma 4.15 that there exists
ϵ > 0 such that if |s − t| < ϵ, then there exist two nonzero index critical points of us that are distinct from v.
Suppose that 0 < |s − t| < ϵ. If c0(s) ̸= 0, then, since v is acute, Corollary 6.4 implies that ind(us, v) ̸= 0, and
hence S(s) ≥ 3. On the other hand, if c0(s) = 0, then Corollary 6.5 implies that Z(Leus) has an arc that ends at
v where e is a side adjacent to v. In sum, if |s− t| < ϵ, then either S(s) ≥ 3 or V (s) ≥ 1.

(A is closed) By assumption, for each t ∈ [0, 1), no two sides of Pt are orthogonal, and so the set of t such that
V (t) ≥ 1 is closed by Lemma 2.1. Suppose that S(tn) ≥ 3 with tn → t. To prove that A is closed it suffices to show
that either S(t) ≥ 3 or V (t) ≥ 1.

If the eigenfunction ut has an interior critical point, then Lemma 7.1 implies that S(t) ≥ 4 or V (t) ≥ 1. Thus,
we may assume that ut has no interior critical points. By Proposition 4.16, the two index 1 critical points, p+ and
p− lie in ∂P . Suppose that there exists a third critical point p. If the index of p is nonzero, then S(t) ≥ 3. Thus,
in the following we assume that ind(u, p) = 0.

If some acute vertex v has is not a local extremum, then by Corollary 6.5 an arc of Z(Lev) ends at v, and so
V (t) ≥ 1. Thus, we may assume that each acute vertex is a local extremum. If there are three local extrema, then
S(t) ≥ 3. Hence we may assume that the acute vertices correspond to the the index 1 critical points p+ and p−.

Because S(tn) ≥ 3, for each n there exists a critical point pn on a side that is distinct from p+ and p−. Suppose
that pn converges to a vertex v of Pt whose angle does not equal π. Then, by Lemma 3.3 the leading coefficient—
c0(t) if v is acute and c1(t) if v is obtuse—equals zero. If v is obtuse then Corollary 4.8 implies that v is a nonzero
index critical point and so S(t) ≥ 3. If v is acute, then by Corollary 6.5 we have V (t) ≥ 1.

Therefore, we may assume that pn converges to a critical point p of ut that lies in the interior of a side e. Since
p ̸= p±, the critical point has index equal to zero. Thus, by Lemma 5.3, the graph Z(Leut) intersects the interior
of Pt and has at least two degree 1 vertices. If one of these degree 1 vertices equals a vertex of Pt then V (t) ≥ 1.
If a degree one vertex lies in the interior of a side then it is a nonzero index critical point by Proposition 5.2, and
hence S(t) ≥ 3 since the acute vertices p± are also nonzero index critical points. □

Theorem 7.3. Suppose that Pt is a path of n-gons such that no two sides of Pt are orthogonal. If P1 is an obtuse
triangle, then each second Neumann eigenfunction of P0 has exactly two critical points, a global maximum at one
acute vertex and a global minimum at the other acute vertex. Moreover, the second Neumann eigenspace of P0 is
one-dimensional.

Proof. By the method of Lemma 12.2 of [JdgMnd20], one may modify the path Pt so that there exists a continuous
family of second Neumann eigenfunctions ut connecting any u0 to any u1. If u1 is a second Neumann eigenfunction
for an obtuse triangle P1, then by [JdgMnd20] [JdgMnd22a], the acute vertices are the only critical points of u1,
and in particular each is a global extremum and S(1) = 2. Thus Proposition 4.6 and Corollary 6.4 imply that the
coefficient c0 of u1 at each acute vertex is nonzero. Given an acute vertex v, the angle between the opposite side
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and one of the sides adjacent to v is greater than π/2. Hence it follows from Lemma 2.1 that for each side e of
P1 there does not exist an arc in Z(Leu) that ends at an acute vertex. The obtuse vertex is not a local extremum
and hence c1 of u1 at this vertex is nonzero. Thus, it follows from Lemma 2.1 that for each side e of P1, no arc of
Z(Leu1) ends at the obtuse vertex. In sum, S(1) = 2 and V (1) = 0.

Thus, Lemma 7.2 implies that S(0) = 2 and V (0) = 0. In particular, u0 has exactly two nonzero index critical
points and these are necessarily the global extrema of u0. Each global extremum must be an acute vertex. Indeed
if an acute vertex v of P were not a local extremum, then by Corollary 6.5 we would have that Z(Lev) has an arc
that ends at v where e is a side adjacent to v, contradicting V (0) = 0.

Suppose that there exists a critical point p of u0 that were distinct from the acute vertices. Then p has index
zero and lies in a side of P0. Thus, p lies in the interior of a side e of P , and hence by Lemma 5.3, the graph
Z(Leut) intersects the interior of Pt and has at least two degree 1 vertices. If a degree 1 vertex p lies in the interior
of a side, then ind(u, p) ̸= 0 by Proposition 5.2, a contradiction. Therefore, the acute vertices are the only critical
points of u0.

Finally, we show that the second Neumann eigenspace of P0 is one-dimensional. Let u+ and u− be second
Neumann eigenfunctions of P0 and let v be an acute vertex. Then there exist a+, a− ∈ R so that a+ · u+(v) +
a− · u−(v) = 0. We claim that u∗ := a+ · u+ + a− · u− ≡ 0. Indeed, if not then u∗ would be a second Neumann
eigenfunction and in particular would be orthogonal to the constant functions. Thus both the the maximum value
and the minimum value of u would be nonzero. But by Theorem 7.3, the acute vertex v is a global extremum of u∗

and hence we have a contradiction. □

We now show that the set of polygons that satisfy the hypotheses of Theorem 7.3 is the interior of the set
of polygons that satisfy the Lip-1 condition of [AtrBrd04]. First we recall, the notion of Lip-K domain. Let
f+ : [−b, b] → R and f− : [−b, b] → R be a pair of Lipschitz functions such that

• f+(±b) = f−(±b),
• f−(x) < f+(x) for x ∈ (−b, b), and
• the Lipschitz constant of f± is at most K.

The domain {(x, y) : f−(x) < y < f+(x)} is called a Lip-K domain.
Recall that if Ω is a domain with Lipschitz boundary ∂Ω then the outward unit normal vector ν(p) is defined for

almost every p ∈ ∂Ω.

Proposition 7.4. A simply connected Lipschitz domain Ω is isometric to a Lip-1 domain if and only if there exists
a partition of ∂Ω into two connected sets Γ+ and Γ− so that if p, p′ ∈ Γ± then ν(p) · ν(p′) ≥ 0 and if p ∈ Γ+ and
q ∈ Γ− then ν(p) · ν(q) ≤ 0.

Proof. (⇒) After applying an isometry, we may suppose that Ω is bounded by the graphs of the Lip-1 functions f+
and f− as above. Let Γ+ be the graph of f+ and let Γ− be the graph of f−. Suppose that ν(p) = (x, y). Since f+

is Lip-1 we have that p ∈ Γ+ implies that y > |x|, and since f− is Lip-1 we have that p ∈ Γ− implies that y < −|x|.
It follows that if p, p′ ∈ Γ± then ν(p) · ν(p′) ≥ 0 and if p ∈ Γ+ and q ∈ Γ− then ν(p) · ν(q) ≤ 0.

(⇐) Let p+n ∈ Γ+ and p−n ∈ Γ− be sequences such that limn→∞ ν(p+n ) ·ν(p−n ) equals the supremum of {ν(p) ·ν(q) :
p ∈ Γ+, q ∈ Γ−}. Let w be a limit point of the sequence (ν(p+n )− ν(p−n )) /|ν(p+n ) − ν(p−n )|. A computation shows

that for each p ∈ Γ+ we have ν(p) ·w ≥ 1/
√
2 and for each p ∈ Γ− we have ν(p) ·w ≤ −1/

√
2. Choose coordinates

in the plane so that the vector w is the vector (0, 1). Then for each p ∈ Γ we have ν(p) = (x, y) where y ≥ |x|.
From this it follows that Γ+ is the graph of a Lip-1 function f+ : [a+, b+] → R. Similarly, Γ− is the graph of
a Lip-1 function f− : [a−, b−] → R. Because Γ+ and Γ− form a partition of ∂Ω we have f+(a+) = f−(a−) and
f+(b+) = f−(b−). Because ν(p) is the outward normal vector for a domain we have f+ > f−. □

Corollary 7.5. A triangle T is a Lip-1 domain if and only if T is not an acute triangle.

Proof. Let e1, e2, e3 be the sides of the triangle and let ν1, ν2 and ν3 be the associated outward normal vectors.
The angle between ei and ej is acute if and only if νi · νj < 0. The claim follows from Proposition 7.4. □

Proposition 7.6. Suppose that Pt is a path of polygons such that no two sides of Pt are orthogonal and P0 is
isometric to a Lip-1 domain. Then each Pt is also isometric to a Lip-1 domain.

Note that we are allowing for the possibility that some vertices have angle π for some t.
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Proof. Since P0 is a Lip-1 domain, there exists a partition {Γ+, Γ−} of ∂P0 that satisfies the criteria of Proposition
7.4. In particular, Γ+ is the union of sides with outward unit normal vectors ν+1 (0), . . . , ν+j (0), the set Γ− is the

union of sides with outward unit normal vectors ν−1 (0), . . . , ν−k (0), and these normal vectors satisfy ν±i (0) ·ν
±
j (0) ≥ 0

and ν+i (0) ·ν
−
j (0) ≤ 0. Since no two sides of P0 are orthogonal, each inequality is strict. The quantities ν±i (t) ·ν

±
j (t)

and ν+i (t) · ν
−
j (t) depend continuously in t and cannot vanish since no two sides of Pt are orthogonal. Thus the

inequalities persist for all t, and thus each Pt is a Lip-1 domain by Proposition 7.4. □

Proposition 7.7. If P is a Lip-1 polygonal domain with no two sides orthogonal, then there exists a path Pt of
polygons with no two sides orthogonal such that P1 = P and P0 is an obtuse triangle.

Proof. We will argue via induction on the number, n, of sides of P . If n = 3, then the claim follows from 7.5.
Suppose that the claim is true if a Lip-1 polygon has n sides no two of which are orthogonal. Let P be a Lip-1
polygon with n+ 1 sides such that no two sides are othogonal. Proposition 7.4 implies that the sides of P can be
partitioned into sides e+1 , . . . , e

+
j and e−1 , . . . , e

−
k , so that the associated outward unit normal vectors ν+1 , . . . , ν

+
j and

ν−1 , . . . , ν
−
k satisfy the inequalities ν±i · ν±j > 0 and ν+i · ν−j < 0. Because P has nonempty interior, by relabeling

if necessary, we may assume that ν+1 ̸= ν+2 and the sides e+1 and e+2 are adjacent. Let v be the vertex shared by
e+1 and e+2 , and let v′ be the midpoint of the segment that joins the other two vertices of e+1 and e+2 . Define Pt to
be the polygon obtained from P by replacing v with vt = (1 − t) · v + t · v′. A straightforward computation show
that both n+1 (t) and n

+
2 (t) are convex combinations of n+1 and n+2 , and so it follows that Pt is a Lip 1-polygon with

no orthogonal sides. The polygon P1 may be regarded as a Lip-1 polygon with only n sides no two of which are
orthogonal. Thus, by the inductive hypothesis, we may concatenate the path Pt with another path to obtain the
desired path to an obtuse triangle. □

8. Instability via blocking

In this section we provide criteria—Proposition 8.1—that guarantee the existence of a quadrilateral with a second
Neumann eigenfunction that has an unstable critical point. In §9, we will construct families of quadrilaterals that
meet the criteria under the assumption that these quadrilaterals have no interior critical points.

The statement and proof of Proposition 8.1 are somewhat complicated, but the basic idea is simple: Suppose
that we have a continuous family of quadrilaterals Qt with an obtuse vertex wt and sides e−t and e+t adjacent
to wt. Suppose further that for the associated family of eigenfunctions ut, we know that u0 (resp. u1) has only
one nonvertex critical point p0 (resp. p1), that this critical point lies on the side e−0 (resp. e+1 ), and that this
critical point has index −1. One might naively expect that the index −1 critical point varies continuously in t, and
therefore, for some time t, the critical point lies at the obtuse vertex wt. However, Lemma 3.1 would then imply
that c1 = 0 at wt, and then Corollary 6.4 would imply that wt is an index +1 critical point. Thus, the index of
the critical point would abruptly change which is not possible by Proposition 4.14. Roughly speaking, the obtuse
vertex ‘blocks’ the index −1 critical point.

Under additional assumptions, we show that this ‘blocking phenomenon’ implies the existence of an unstable
critical point.

Proposition 8.1. Let Qt be a continuous family of quadrilaterals such that for each t ∈ [0, 1] the quadrilateral Qt
has three acute vertices, and the angle of the fourth vertex, wt, lies in (π/2, π) for each t ∈ (0, 1). Let et be a side
of Qt that is adjacent to wt so that t 7→ et is continuous. Let ut : Qt → R be a second Neumann eigenfunction, and
suppose that t 7→ ut is continuous. Suppose that

(1) for each t, the eigenfunction ut has no interior critical points,
(2) for each t, each nonzero index critical point of ut either is a vertex or belongs to a side adjacent to wt,
(3) for each t, each acute vertex of Qt is a local extremum of ut,
(4) u0 has exactly one nonvertex critical point and it belongs to the interior of e0.
(5) u1 has no critical points on e1 except for the acute vertex.

Then there exists t ∈ (0, 1) such that ut has an unstable critical point.

Proof. For each t ∈ [0, 1], let At be the set of critical points p of ut such that either p = wt or p lies in the interior
of a side of Qt that is adjacent to wt. We claim that there exists δ > 0 so that for all t no element of At is within
distance δ of an acute vertex. Indeed, if not, then there would exist t ∈ [0, 1], a sequence tn → t, and a sequence
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of critical points pn of un that converges to an acute vertex v. Lemma 3.1 would then imply that c0 = 0 at v, but
this would contradict part (3) of Corollary 6.4 and condition (3) above.

By condition (4), the set A0 has exactly one element p0, and it follows from Proposition 4.3 that the index of p0
equals −1. Thus, Proposition 4.14 implies that the sum of the indices of the critical points in At equals −1.

Let t∗ be the supremum of t ∈ [0, 1] such that As contains exactly one nonzero index point, ps, for each s ≤ t. It
follows from Proposition 4.14 that s 7→ ps is continuous on [0, t∗) and the index of each ps equals −1. Moreover, as
s ↗ t∗ the point ps converges to a point pt∗ . Indeed, if pt were to have more than one limit point as t ↗ t∗, then,
since t 7→ pt is continuous for t < t∗, we would have a nontrivial continuum of critical points. But since Qt∗ is not
a rectangle, the function ut∗ has only finitely many critical points [JdgMnd22b].

Proposition 4.14 implies that the index of pt∗ equals −1. It follows that the critical point pt∗ lies in the interior
of et∗ . Indeed, otherwise, condition (5) would imply that ps = ws for some s ≤ t∗. But this would contradict part
(5) of Corollary 6.4.

If At∗ contains a critical point q that is distinct from pt∗ then q is an unstable critical point since ps is the only
critical point in As for s < t∗. For the remainder of the proof we will suppose that pt∗ is the only element of At∗ .

By the definition of t∗, there exists a sequence tn ↘ t∗ such that Atn consists of more than one nonzero index
critical point. Since pt∗ is the only critical point in At∗ these points converge to pt∗ , and in particular for n
sufficiently large, the set Atn lies in the interior of etn . By Proposition 6.2, each nonzero index critical point has
index +1 or −1. Hence since the sum of the indices equals −1, the set Atn contains at least three critical points.

But this is impossible. Indeed, if three critical points of utn were to lie in the interior of etn , then Z(Letnutn)
would have three degree 1 vertices that lie in ∂Qtn \ etn , and in particular some degree 1 vertex would lie in the
interior of a side not adjacent to wtn . But this degree 1 vertex would be a nonzero index critical point by Proposition
5.2, thus contradicting (2).

□

9. Breaking acute triangles along a side

In this section, we will construct families of quadrilaterals that satisfy the hypotheses (2) through (5) of Propo-
sition 8.1. The construction consists of:

1. Producing a nonempty open set N of acute triangles T such that the set of critical points of each second
Neumann eigenfunction u consists only of the three vertices and an index −1 critical point;

2. ‘Breaking’ the side that contains the index −1 critical point of T ∈ N to create quadrilaterals for which
each acute vertex is a critical point and for which the only sides that may contain critical points in their
interior are the sides adjacent to the new obtuse vertex;

3. Choosing a path wt of break points so that the resulting path Qt of quadrilaterals forces ‘blocking’ to occur.

We now provide the details of this construction. Define N to be the set of acute triangles T such that if u is any
second Neumann eigenfunction on T , then

(1) each vertex of T is a local extremum of u,
(2) u has exactly one nonvertex critical point p.
(3) the critical point p is nondegenerate.

Proposition 4.3 implies that p has index equal to −1. The main theorem of [JdgMnd22a] implies that p lies on a
side of T . Note that equilateral triangles do not belong to N , and hence by a result of Siudeja [Siudeja], the second
Neumann eigenspace of T is one dimensional for each T ∈ N .

Lemma 9.1. The set N is open in the space of acute triangles.

Proof. By Corollary 6.4, a vertex v of an acute triangle is a local extremum if and only if u(v) ̸= 0. Thus, condition
(1) is open. A critical point p is nondegenerate if and only if the determinant of the Hessian at p is nonzero, and
hence condition (3) is also an open condition.

Thus, if N were not open, then there would exist T ∈ N and a sequence Tn converging to T such that condition
(2) is not satisfied for each n. In particular, for each n there would exist a second Neumann eigenfunction un on
Tn with distinct nonvertex critical points pn and qn.

By passing to a subsequence if necessary, we may assume without loss of generality that un converges to an
eigenfunction u on T . Neither of the sequences pn nor qn can converge to a vertex of T because then, by Lemma
3.1, we would have c1 = 0 contradicting (1). Thus, by (2), both sequences converge to the unique nonvertex critical
point p of T , and it would follow that p is a degenerate critical point, contradicting (3). □
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The set N is also nonempty.

Lemma 9.2. Let T be an isosceles triangle with reflection symmetry σ, and let u be a second Neumann eigenfunction
of T . If the angle of the apex vertex v fixed by σ is less than π/3, then

(1) each vertex is a local extremum of u,
(2) u has exactly one non-vertex critical point p, the midpoint of the side e opposite to v,
(3) p is nondegenerate with index −1,
(4) u(z) ̸= 0 for each z ∈ e.

Proof. By Lemma 3.1 in [Miyamoto] the second Neumann eigenvalue of T has multiplicity one, and u is symmetric
with respect to σ. It follows that the the midpoint p of the side e preserved by σ is a critical point. Let T+, T− ⊂ T
be the two right triangles such that σ(T+) = T− and T+ ∪ T− = T . Since u is symmetric with respect to σ, the
restriction of u to T± is a second Neumann eigenfunction of T±.

By Theorem 4.1 in [JdgMnd22a], the restriction of u to the right triangle T± has no nonvertex critical points
and each acute vertex of T± is a local extremum. It follows that each vertex of T is a local extremum of u and the
midpoint p of e is the only other critical point of u. Thus, Theorem 4.3 implies that p has index −1.

Next we show that u does not vanish on e. By Proposition 6.1, the nodal set Z(u) does not contain a critical
point and hence does not contain the midpoint p. Thus, if there did exist z ∈ e with u(z) = 0, then z ̸= p and
hence σ(z) ̸= z. Since u is symmetric, we would have u(σ(z)) = 0 but then σ(z) would be a second endpoint of
Z(u) that lies in e, a contradiction. Therefore, u does not vanish on e.

Finally, by examining the Taylor expansion of u about p, we find that the p is non-degenerate. Indeed, without
loss of generality, p = 0 and e lies in the x-axis. Since u ◦ σ = u, the restriction of u to e is an even function of x.
In particular, the Taylor coefficient a30 = 0. Thus, if p were degenerate, then Theorems 7.3 and 7.4 in [JdgMnd20]
would imply that u has an additional non-vertex critical point, a contradiction. □

Next, we will ‘break’ each T ∈ N along the side that contains the index −1 critical point. We first give a
precise definition of ‘breaking’: Let T be a triangle9 with vertices v1, v2, v3. Let e be a side of T , let w be a point
that lies in the interior of e, and let nw be the outward pointing unit normal vector at w. For each ϵ ≥ 0, define
w(ϵ) = w+ ϵ ·nw, and define Q(T,w, ϵ) to be the convex hull of {v1, v2, v3, w(ϵ)}. For ϵ > 0, the polygon Q(T,w, ϵ)
is a nondegenerate quadrilateral. We say that Q(T,w, ϵ) is the result of breaking T along e at the point w at distance
ϵ.

Lemma 9.3. Let T ∈ N and let e be the side of T that contains the index −1 critical point. Let K be a compact
subset of the interior of e. There exists δ > 0 such that if 0 ≤ ϵ < δ and w ∈ K, then

(a) the second Neumann eigenfunction u of Q(T,w, ϵ) is unique up to scalar multiplication,
(b) each acute vertex of Q(T,w, ϵ) is a local extremum of u,
(c) if e′ is a side that does not contain the obtuse vertex w, then the interior of e′ does not contain a critical

point of u.

Proof. The simplicity of the second Neumann eigenvalue is an open condition, and the second eigenvalue of each
T ∈ N is simple by [Siudeja]. It follows that there exists δ′ > 0, so that (a) holds for each Q(T,w, ϵ) with ϵ < δ′ and
w ∈ K. Corollary 6.4 implies that condition (b) is an open condition. In particular, c0 ̸= 0 at each acute vertex.

Thus, if the claim were false, then there would exist a sequence ϵn → 0 and wn ∈ K such that Qn := Q(T,wn, ϵn)
has a second Neumann eigenfunction un with a nonvertex critical point pn on a side e′ that does not contain wn(ϵn).
The sequenceQn converges to T , and thus by passing to a subsequence if necessary, we may assume that un converges
to an eigenfunction u on T . If the sequence pn ∈ e′ were to converge to a vertex v of T , then Lemma 3.1 would
imply c1 = 0 at v, a contradiction. If the sequence pn converges to a point p in the interior of e′, then p is a critical
point of u, contradicting the assumption that the ‘unbroken’ sides of T contain no critical points. □

Let δT,K denote the supremum of all possible δ for which the statement of Proposition 9.3 is true for the given
compact set K.

Lemma 9.4. Let T ∈ N and let e be the side of T that contains the index −1 critical point p. Let wt be a path
in the interior of e so that w0 and w1 lie in distinct components of e \ {p}. If K is the image of the path wt,
then for each ϵ ∈ (0, δT,K), the path Qt := Q (T,wt, ϵ · sin(t · π)) has an associated path ut of second Neummann
eigenfunctions that satisfy the conditions (2) through (5) of Proposition 8.1.

9One can easily extend the notion of breaking along a side to general polygons.
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Proof. By the defintion of δT,K , the quadrilateral Q(T,wt, ϵ) satisfies (a), (b), and (c) of Lemma 9.3. Condition (a)
implies that there exists a path ut of eigenfunctions of Qt. Condition (b) implies that ut satisfies condition (3) in
Proposition 8.1, and condition (c) implies that condition (2) is satisfied.

Let et be the side so that e0 is the component of e \ {p} that contains p. It follows that conditions (4) and (5)
of Proposition 8.1 are satisfied. □

Theorem 9.5. Suppose that each convex quadrilateral has no interior critical points. Let T ∈ N and let e be the
side of T that contains the index −1 critical point. Then for each η > 0 there exists ϵ ∈ (0, η) and w in the interior
of e so that each second Neumann eigenfunction u of Q(T,w, ϵ) has an unstable critical point.

Proof. Lemma 9.4 provides us with a family of quadrilaterals Qt and second Neumann eigenfunctions ut that satisfy
conditions (2) through (5) of Proposition 8.1. If each second Neumann eigenfuction on a quadrilateral were to have
no interior critical points, then each ut would also satisfy condition (1). Therefore, Proposition 8.1 would imply
that for some t the function ut has an unstable critical point. □

10. Second Neumann eigenfunctions on convex polygons

Proposition 10.1. Suppose that P is convex without right angles and suppose that w lies in the interior of P . An
arc of Z(Rwu) ends at a vertex v of P if and only if v is a local extremum of u.

Proof. If w lies in P , then it lies in the interior of the sector associated to v. By assumption the angle at v lies
in either (0, π/2) or (π/2, π). The claim then follows from combining Corollary 2.5, Corollary 4.8, and Corollary
6.4. □

With additional hypotheses, we can expand the scope of Proposition 5.2 to include degree 1 vertices of Z(Rwu)
that are vertices of P .

Corollary 10.2. Let u be a second Neumann eigenfunction of a convex polygon P with no right angles. If w lies
in the interior of P then each degree one vertex of Z(Rwu) is a nonzero index critical point.

Proof. Each degree 1 vertex p of Z(Rwu) lies in ∂P . If p lies in the interior of an edge, then Proposition 5.2 applies.
If p is a vertex, then Proposition 10.1 applies. □

Proposition 10.3. Let u be a second Neumann eigenfunction u on a convex polygon P . If u has a critical point p
that lies in the interior of P , then u has at least four nonzero index critical points on the boundary. In particular,
u has at least five critical points.

Proof. Without loss of generality p = 0. Since p is a critical point of u we have

u(z) = u(0) + a · x2 + b · xy + c · y2 + O(|z|3)

for some constants a, b and c. We have Rpu = −y∂x + x∂y and hence

Rpu(z) = b · (x2 − y2) + 2(c− a) · xy − b · y2 +O(|z|3).

In particular, p = 0 is a nodal critical point of the Laplace eigenfunction Rpu. Thus, by the result of [Chn76], the
valence of Z(Rpu) at p is at least four. By Proposition 6.2 in [JdgMnd20], the nodal set Z(Rpu) is a tree whose
degree 1 vertices lie in the boundary of P . Thus Z(Rpu) has at least four degree 1 vertices, and each of these is a
nonzero index critical point by Corollary 10.2. □

Corollary 10.4. If u has has only three critical points, then each critical point lies on the boundary. Moreover,
one critical point is a global maximum, one critical point is a global minimum, and the third critical point has index
zero.

Proof. By Proposition 10.3, each critical point lies on the boundary. Since u is nonconstant, at least two of these
critical points are global extrema. The index of each global extremum is +1. Thus, if there are exactly three critical
points, then it follows from Proposition 4.3 that two critical points have index 1 and the third has index zero. □
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