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Abstract. For a hyperbolic surface S of finite type we consider the set
A(S) of angles between closed geodesics on S. Our main result is that
there are only finitely many rational multiples of π in A(S).

1. Introduction

Geometry of two dimensional manifolds, surfaces, have been in the center
of mathematical research for centuries. Hyperbolic metrics on surfaces has
been a very important testing ground for different geometric curiosities.
In particular, lengths of closed geodesics on these surfaces have been an
important topic of research for years (see [Hu], [O], [W]). This article is on
a related geometric quantity the angles between pairs of closed geodesics.

Let S be a hyperbolic surface of finite type. We denote the set of angles
between pairs of closed geodesics on S by A(S). A fixed angle may appear
at many different intersections. We call this number of distinct appearances
the multiplicity of the angle. We denote the set of angles in A(S) forgetting
their multiplicities by A(S) and call A(S) and A(S) by angle spectrum and
angle set respectively.

We begin by specifying a way of measuring these angles. Let γ and δ
be two closed geodesics on S that intersect each other at p. Let γ̇p and δ̇p
respectively denote the tangent vectors to to γ and δ at p. We measure the
angle of intersection θ(γ, δ, p) between γ̇p and δ̇p in the counter clockwise
direction from γ to δ. In particular θ(γ, δ, p) = π − θ(δ, γ, p).

Remark 1.1. For γ, δ and θ = θ(γ, δ, p) as above cos2(θ) depends on γ and
δ but not on the direction in which the angle is measured.

In this article we focus on qualitative properties of the two collections
A(S) and A(S). For any hyperbolic surface S of finite type A(S) is a
countable infinite set and it follows from [P-S] that A(S) is dense in [0, π].
The main question that we address in this paper is the following.

Question 1.2. How many angles in A(S) can be a rational multiple of π ?
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Surprisingly the author’s motivation to study this question came from a
seemingly unrelated field. In the paper [J-M] we have studied eigenfunctions
of the Laplacian on hyperbolic surfaces. Let φ be an eigenfunction of the
Laplacian on H2. Let Γφ denote the subgroup of isometries of H2 that leaves
φ2 invariant. In [J-M] we have observed (motivated by a similar observation
in [G-R-S]) that if φ vanishes on a geodesic γ then it is odd with respect to
the reflection isometry Rγ along γ of H2 i.e. φ ◦ Rγ = −φ. In particular,
Rγ ∈ Γφ. An important property of any non-constant eigenfunction φ is
that the subgroup Γφ is discrete (see [J-M]).

Now consider two intersecting geodesics γ, δ on H2 and consider the sub-
group Γ(γ, δ) of SL(2,R) generated by the reflections Rγ , Rδ along γ and δ
respectively. Let γ, δ intersect each other at p and let θ = θ(γ, δ, p). Then
Γ(γ, δ) contains an elliptic isometry of H2 which is a rotation about p by an
angle equal to θ. Let φ be a non-constant eigenfunction that vanish on both
γ and δ. Then by the last paragraph Γ(γ, δ) ⊂ Γφ. In particular, since Γφ
is discrete, so is Γ(γ, δ) implying that θ must be a rational multiple of π.

It is not difficult to construct eigenfunctions that vanish on two inter-
secting geodesics, even on closed hyperbolic surfaces (see [J-M]). In general
the answer to Question 1.2 is ‘infinite’. In the last section we construct ex-
amples of surfaces for which there are infinitely many distinct intersections
between pairs of closed geodesics such that the angle of intersection is π/2.
The main result of this article is that, in general, there are infinitely many
rational multiples of π in A(S) if and only if one of these rational multiples
of π has infinite multiplicity in A(S).

Theorem 1.3. For any hyperbolic surface S of finite type there are only
finitely many angles in A(S) that are rational multiples of π.

1.1. Structure of the article. In the first section we consider a complete
hyperbolic surface S of finite type. Using uniformization theorem we con-
sider a Fuchsian group Γ such that S = H2/Γ, up to isometry. For two
intersecting closed geodesics γ and δ on S we fix an intersection point p. In
§1 we consider Mγ ,Mδ ∈ Γ representing γ and δ respectively and use the
matrix entries of Mγ and Mδ to get a formula for cos2(θ) where θ = θ(γ, δ, p).

We prove Theorem 1.3 in §2. In the first step of the proof we consider the
field FΓ obtained by attaching the matrix entries of all the elements in Γ to
Q. Using the fact that Γ is finitely generated it follows that FΓ is a finitely
generated field extension of Q. Using the expression for cos2(θ) obtained in
§1 we deduce that cos2(θ) ∈ FΓ for any angle θ ∈ A(H2/Γ).

The final arguments of the proof go follows. For simplicity, assume that
FΓ is algebraic over Q. Since FΓ is finitely generated over Q we obtain
that the degree of extension FΓ|Q is finite. Now let p

qπ be in A(H2/Γ) and

so cos2(pqπ) ∈ FΓ. Then there is a field extension F(q) of FΓ with degree

of extension at most two that contain a primitive q-th root of unity. In
particular, the degree of extension F(q)|Q is uniformly bounded independent
of q. Finally we observe that the degree of extension F(q)|Q is at least φ(q)
where φ is the Euler’s φ-function that counts the number of distinct positive
integers less than and co-prime with q. Since φ(q) goes to infinity as q goes
to infinity [H-W, Theorem 328], we reach our desired contradiction.
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2. Formula for the cosine of an angle

Let Γ be a finitely generated Fuchsian group. This usually means that
Γ ⊂ PSL(2,R). By taking the pre-image of Γ under the quotient map
Π : SL(2,R) → PSL(2,R) we can always think of Γ ⊂ SL(2,R). This
identification will be assumed in the article from now on. It is a standard fact
that every closed geodesic on S corresponds to a conjugacy class of elements
in π1(S) = Γ. Let γ, δ be two closed geodesics on S and let Mγ ,Mδ ∈ Γ be
two representatives of γ, δ respectively. Let us denote

Mγ =

(
aγ bγ
cγ dγ

)
, Mδ =

(
aδ bδ
cδ dδ

)
.

Recall that γ and δ are the projections of the axes of Mγ and Mδ respectively,
under the covering map: H2 → H2/Γ. Since γ and δ are closed geodesics,
Mγ and Mδ are hyperbolic linear fractional transformations. Thus the axes
of Mγ and Mδ are either semi-circles or vertical straight lines that intersect
R orthogonally. Here R ∪ {∞} is identified with the boundary ∂H2 of H2.

Observe that in both the cases it is possible to determine the axis of Mγ

(or Mδ) from the points where they intersect R. Now these last set of points
are just the fixed points of Mγ (or Mδ). The fixed points of Mγ can be
computed simply as follows. There are two cases.

Case I: First let the axis of Mγ (or Mδ) be a semi-circle. Then both the
points of intersections are finite real numbers that satisfy

Mγ(z) = z ⇒ aγz + bγ
cγz + dγ

= z ⇒ cγz
2 + (dγ − aγ)z − bγ = 0.

Hence the two points of intersections of the axis of Mγ with the real line are
the two roots of the equation

(2.1) cγz
2 + (dγ − aγ)z − bγ = 0.

Denote these by αγ and βγ with αγ < βγ . In terms of matrix coefficients of
Mγ we have

αγ =
(aγ − dγ)−

√
(aγ − dγ)2 + 4cγbγ
2cγ

,

(2.2) βγ =
(aγ − dγ) +

√
(aγ − dγ)2 + 4cγbγ
2cγ

.

Using detMγ = 1 they take the form:

(2.3) αγ =
(aγ − dγ)−

√
trMγ

2 − 4

2cγ
, βγ =

(aγ − dγ) +
√

trMγ
2 − 4

2cγ
.

In particular the center and the Euclidean radius of the axis of Mγ are
respectively

(2.4) mγ = (
aγ − dγ

2cγ
, 0) and rγ =

√
trMγ

2 − 4

2cγ
.

Case II: The axis of Mγ is a vertical straight line. In particular cγ =
0. Then the only point of intersection between the axis of Mγ and R is

(
bγ

dγ−aγ , 0).
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Figure 1. Cosine of the angle

2.1. Cosine of the angle. Consider two intersecting closed geodesics γ and
δ on S. Fix one point of their intersection p. Choose two representatives
Mγ ,Mδ for γ, δ respectively such that the point of intersection p̃ between
the axis of Mγ and the axis of Mδ is a lift of p under the covering map
π : H2 → H2/Γ = S. Let θ = θ(γ, δ, p). Hence θ is the angle between the
axis of Mγ and the axis of Mδ at p̃. Now we have two cases depending on
the nature of the axes of Mγ and Mδ. We treat them separately.

Case I: First let us assume that both Mγ and Mδ have semi-circle axes.
This situation is explained in the top picture in 1. Let ψ be the angle
between the normals to the the axis of Mγ and the axis of Mδ at p̃. Then
ψ = π − θ.

Now consider the Euclidean triangle on H2 with the following three ver-
tices: the centre of the (semi-circle) axis of Mγ , the centre of the (semi-circle)
axis of Mδ and p̃ the point of intersection of the two axes. Let us denote
the distance between the two centres by dγ,δ. Hence

(2.5) dγ,δ = |aγ − dγ
2cγ

− aδ − dδ
2cδ

|.

Using Euclidean geometry for the above described triangle we obtain

cos(π − θ) =
r2
γ + r2

δ − d2
γ,δ

2rγrδ
.

Thus

(2.6) cos2(θ) =
(r2
γ + r2

δ − d2
γ,δ)

2

4r2
γr

2
δ

.

Case II: Now we assume that the axis of Mγ is a vertical straight line.
Since γ and δ intersect each other, the axis of Mδ must be a semi-circle.



ANGLE-SPECTRUM 5

This situation is explained in the bottom picture of 1. Consider the normal
Nδ to the axis of Mδ at p̃. Let ψ be the angle between the boundary ∂H2 = R
and Nδ. Observe that ψ = θ. Now we consider the Euclidean triangle with
vertices: the center of the axis of Mδ, the point of intersection between axis
of Mγ and ∂H2 = R and p̃. By the definition of the cosine function and the
last equality ψ = θ we get

(2.7) cos2(θ) =

( | bγ
dγ−aγ −

aδ−dδ
2cδ
|

√
trMδ

2−4
2cδ

)2

.

Lemma 2.8. From the above two expressions it is clear that cos2(θ) is
expressible as rational functions in the matrix entries aγ , bγ , cγ , dγ of Mγ

and aδ, bδ, cδ, dδ of Mδ.

Remarks 2.9. (1) The two expressions (2.6) and (2.7) are not original.
Some variant of these expressions are most likely known to experts. The
author was informed by the anonymous referee that an expression similar
to these is implicitly used in [M].

(2) It was pointed out to the author by the anonymous referee that it is
possible to deduce the same conclusion as in Lemma 2.8 by staying entirely
in hyperbolic framework (avoiding Euclidean geometry). This approach is
in fact a little shorter than ours. We are sticking to this approach mainly
because of the last part of the proof our main result, which in the other
approach becomes a bit complicated.

3. Proof of Theorem 1.3

Consider the field

FΓ = Q(aγ , bγ , cγ , dγ : Mγ =

(
aγ bγ
cγ dγ

)
∈ Γ)

generated by the entries of the matrices in Γ ⊂ SL(2,R). Observe that this
is a finitely generated field. This is clear because Γ is a finitely generated
group and so adjoining the matrix entries of a generating subset of Γ is
enough.

Now we have two cases depending on whether FΓ is algebraic over Q or
not. In the latter case, since FΓ is finitely generated over Q, there is a purely
transcendental extension TΓ|Q ⊂ FΓ such that FΓ is algebraic over TΓ. To
treat the two cases at the same time let TΓ denote Q when FΓ is algebraic
over Q. In both the cases FΓ is finitely generated over TΓ. Hence the degree
[FΓ : TΓ] of the extension FΓ|TΓ

is finite.
Now from Lemma 2.8 we have for θ = θ(γ, δ, p) the value cos2(θ) is in FΓ.

Hence the degree of the field extension FΓ(e2iθ)|FΓ

[FΓ(e2iθ) : FΓ] ≤ 2.

This implies that the degree of the extension TΓ(e2iθ)|TΓ

[TΓ(e2iθ) : TΓ] ≤ [FΓ(e2iθ) : TΓ] = [FΓ(e2iθ) : FΓ] · [FΓ : TΓ] ≤ 2[FΓ : TΓ].
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Now recall that TΓ is a purely transcendental extension of Q and so for θ
rational multiple of π (since e2iθ is algebraic over Q) we always have

[TΓ(e2iθ) : TΓ] = [Q(e2iθ) : Q].

Now let θ = p
qπ. It is a known fact that, in this case, the degree

(3.1) [Q(e2iθ) : Q] = [Q(e
2iπp
q ) : Q] = φ(q)

where φ is the Euler φ-function. Thus combining the above inequalities we
have

φ(q) ≤ 2[FΓ : TΓ].

Hence there are only finitely many choices for q by [H-W, Theorem 328].

Remarks 3.2. (i) Observe that the field FΓ depends explicitly on Γ where
A(H2/Γ) depends only on the conjugacy class of Γ because conjugate groups
produce isometric surfaces. Hence we conclude that for any p

q ·π ∈ A(H2/Γ)

φ(q) ≤ 2 · min
γ∈PSL(2,R)

[FγΓγ−1 ,TγΓγ−1 ].

This can be used to give an explicit bound on the size of A(H2/Γ) ∩Q · π.
(ii) For the modular surface H2/PSL(2,Z) the group Γ is PSL(2,Z) and

so the field FΓ is just Q. Hence for any p
qπ ∈ A(H2/PSL(2,Z)) we have

φ(q) ≤ 2 i.e. q ≤ 6. A simple computation provides that the possible angles
are π/6, π/4 and π/3.

4. Some questions and examples

Let Γ be a Fuchsian group as above and S = H2/Γ. Given an angle
θ ∈ A(S) one may consider the map Θ : A(S)→ F1

Γ given by Θ(θ) = cos2(θ),
where F1

Γ ⊂ FΓ is the set of elements with norm < 1.

Question 4.1. What is the image of this map ?

Since A(S) is dense in [0, π] the image is dense in [−1, 1] and hence in F1
Γ.

It is not clear if it equals F1
Γ though.

4.1. Angles with infinite multiplicity. Now we show that for m < n
there are closed hyperbolic surfaces S such that the angle mπ/n has infinite
multiplicity in A(S). Let S be a hyperbolic surface that has an isometry τn
of order 2n that fixes exactly two points x1, x2 of S and such that S/ < τn >
is not homeomorphic to the sphere. Clearly S/ < τn > has exactly two cone
points with cone angle equal to π/n. Since S/ < τn > is not homeomorphic
to the sphere there are infinitely many geodesic arcs on S/ < τn > that
joins the two cone points. Let γ be one such arc and let γ̃ be a lift of γ that
joins x1, x2. It is not that difficult to see that γ̃ and τnn (γ̃) forms a closed
geodesic γ̂ that contains γ̃. It is now easy to see that for any m < n the
angle between γ̂ and τmn (γ̂) at x1 (or x2) equals mπ/n.

It was pointed out by the referee that the above example can be modified
to construct a closed hyperbolic surface S′ such that the angle mπ/n has
infinite multiplicity in A(S′) but S′ has no isometry.

Our last question is the following:

Question 4.2. What angles in A(S) can have infinite multiplicity ? In
particular, can irrational multiples of π have infinite multiplicity ?
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