
RIGIDITY OF THE LENGTH-ANGLE SPECTRUM FOR CLOSED

HYPERBOLIC SURFACES

SUGATA MONDAL

Abstract. We introduce a new unmarked geometric spectrum, the length-
angle spectrum, for closed hyperbolic surfaces. We show that unlike the length

spectrum, the length-angle spectrum of any closed hyperbolic surface deter-

mines the surface, up to isometry.

1. Introduction

Let Sg be a closed orientable Riemannian surface of genus g. For g ≥ 2 there are
many hyperbolic metrics that Sg can be equipped with. Due to this sharp contrast
to Mostow’s rigidity theorem in higher dimensions it is an important question what
kind of geometric information of a hyperbolic metric on Sg can uniquely determine
the metric, up to isometry.

One set of important geometric collection to look at is the set of unit speed closed
geodesics. From here onwards by geodesic we always mean unit speed geodesic.
Lengths of these closed geodesics with an explicit marking, called the marked length
spectrum (see §1.1, [10], [18], [8]), is known to determine the metric, up to isometry.
Without the marking such a result is known to be not true in general (see §1.1,
[21], [20]). We introduce the length-angle spectrum for these surfaces in §1.4. This
spectrum, in a weak sense, keeps track of how pairs of simple closed geodesics
intersect with each other. As in the case of length spectrum, this spectrum do not
come with an explicit marking. However, in our main result of this paper we show
that the length-angle spectrum determines the metric, up to isometry.

Main Theorem. Let S, S′ be two closed hyperbolic surfaces with identical length-
angle spectrum. Then S is isometric to S′.

1.1. Length spectrum. Let C(Sg) be the space of closed curves on Sg up to
homotopy. Let Mg denote the moduli space of hyperbolic metrics on Sg up to
isometry. For S ∈ Mg and γ ∈ C(Sg) let `S(γ) denote the length of the closed
geodesic freely homotopic to γ on S. Since every closed essential curve on S is
freely homotopic to a unique closed geodesic, we denote by C(S) the space of all
closed geodesics on S. The marked length spectrum of S is defined to be the map

` : C(S)→ R
which sends a geodesic in C(S) to its length. A classical result dating back to
Fricke-Klein [10] says that the marked length spectrum of a hyperbolic metric on
Sg determines the metric. In [3] the possibility of extensions of this rigidity result
to negatively curved manifolds was first suspected. It was subsequently confirmed
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by Otal [18] and Croke [8] for surfaces with variable negative curvature. Since then
it has been extended in many different directions.

The sequence of lengths of all closed geodesics on S, counting multiplicity and
without any marking, is called the length spectrum of the surface. There is a well-
known connection between the length and the Laplace spectrum of S due to Huber
[13]: The length and the Laplace spectrum of a hyperbolic metric on Sg determines
each other. Rigidity results related to the length spectrum probably appeared
for the first time in the work [11] of I. M. Gel’fand who showed that there is no
continuous family in Mg for which the length spectra stay the same. He further
conjectured that the length spectrum determines the hyperbolic metric. The first
counter examples to this conjecture appear in [21]. Later Sunada [20] gave an
elegant method for constructing such counter examples.

Remark 1.1. Rigidity questions related to (unmarked) length spectrum can be
traced back to the question popularized by M. Kac [15]: ‘Can one hear the shape
of a drum ?’

The best possible result for the length spectrum is due to McKean [17] that says
that only finitely many non-isometric closed hyperbolic surfaces of a fixed genus
can have the same length spectrum i.e. the map from L :Mg → RN that sends a
metric to its length spectrum is ‘finite to one’. In [22], Wolpert gave another proof
of this fact. He moreover showed that there is a proper analytic sub-variety Vg of
Mg that contains all genus g hyperbolic surfaces that are not determined by their
length spectrum. Hence Gel’fand’s conjecture, although false in general, is true in
the generic sense.

Remarks 1.2. 1. For a closed surface S equipped with a negatively curved metric
it is long known that the geodesic flow on the unit tangent bundle of S is ergodic
[1]. This fact implies that closed geodesics are dense on S. This, in some sense,
was the reason for the above rigidity speculations and results.

2. On the contrary, simple closed geodesics on a closed hyperbolic surface is
nowhere dense [2]. Hence there is no reason, along these lines, to believe that
Theorem 1 should be true. However, since the length-angle spectrum is ‘too’ large
a collection compared to the length spectrum it is probably not that surprising that
Theorem 1 is true.

3. We shall see that the proof of Theorem 1 follows a different approach from the
approaches in [18], [8] and is somewhat motivated by the classical arguments in the
proof of the 9g − 9 Theorem [9].

1.2. Simple length spectrum. Let G(Sg) ⊂ C(Sg) be the space of simple closed
curves on Sg up to homotopy. G(Sg) has been an important object of study in
the literature (see [9], [16]). For S ∈ Mg let G(S) ⊂ C(S) be the space of simple
closed geodesics on S. The sequence of lengths of these simple closed geodesics on
S, counting multiplicity, is called the simple length spectrum of S.

Wolpert’s proof in [22] of McKean’s result [17] applies to the simple length spec-
trum providing that for a fixed g there are only finitely many surfaces in Mg that
have the same simple length spectrum. It would be very interesting to see how
far can the simple length spectrum determine the surface. Since the whole length
spectrum is not sufficient to determine the metric, it is probably true that simple
length spectrum is not sufficient either (see §7.2). The author could not locate any
literature involving this question.

1.3. Angles between simple closed geodesics. Now we consider another geo-
metric collection related to pairs of simple closed geodesics, the angles between
them. Suppose γ, δ ∈ G(S) intersect each other ι(γ, δ) times. We consider the set
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ΘS(γ, δ) of ι(γ, δ) angles of intersection between γ and δ where each angle is mea-
sured in the counter-clockwise direction from γ to δ and the sequence is recorded
along γ as they occur.

Defined that way ΘS(γ, δ) is a point in the product of ι(γ, δ) copies of (0, π).
Since we do not record the points of intersection between γ and δ it is clear that
ΘS(γ, δ) is defined only up to the action of the cyclic permutation (1, 2, ..., ι(γ, δ))
and its inverse. The set of angles in ΘS(γ, δ) forgetting the ordering and multiplic-
ities would be denoted by Φ(γ, δ).

Remark 1.3. For a collection of simple closed geodesics and simple geodesic arcs
α, β1, · · · , βk on S the above definition equally works to define ΘS(α,∪ki=1βi). When
α is a geodesic arc we list the angles beginning from one of the end points of α
through the other.

Definition 1.3.1. A tuple (θ1, · · · θl) is called an ordered subset of the angle set
ΘS(α,∪ki=1βi) if the ordering of θis respect that of ΘS(α,∪ki=1βi).

Angles between more general types of geodesics has been studied in the literature.
One particular case is the self-intersection angles of non-simple closed geodesics.
An interesting statistical behavior of these self-intersection angles was obtained by
Pollicott and Sharp in [19].

1.4. Length-Angle Spectrum. The main object of our study in this paper is the
length-angle spectrum LΘ(S) that we define as the collection

{(`S(γ), `S(δ),ΘS(γ, δ)) : γ, δ ∈ G(S)}.
In a week sense we do have a marking in (`S(γ), `S(δ),ΘS(γ, δ)) when γ, δ are
known. When we consider LΘ(S) as a whole, we do not have any explicit idea
which pair of geodesics correspond to which tuple in LΘ(S) in the sense of marked
length spectrum.

1.5. Sketch of the proof. We now give a brief idea of the proof. Consider two
simple closed geodesics α and β on S with ι(α, β) = 1. It is not difficult to see that
a thickened neighborhood of α ∪ β in S determines a unique compact one holed
torus T (α, β) ⊂ S with geodesic boundary. A simple but important observation
is that the triple (`S(β1), `S(β2),ΘS(α, β)) determines T (α, β). In particular if α′

and β′ be two simple closed geodesics on another hyperbolic surface S′ with

(`S(α), `S(β),ΘS(α, β)) = (`S′(α
′), `S′(β

′),ΘS′(α
′, β′))

then the corresponding compact one holed torus with geodesic boundary T (α′, β′)
in S′ is an isometric copy of T (α, β) (see Lemma 3.0.1). This observation works
as the motivation for our approach. In the first step towards the proof of Theorem
1 we formulate a rigidity criteria of similar type that works for the whole surface.
We consider a simple closed non-separating geodesic γ0 on S and construct a pants
decomposition of S such that different geodesics in the pants decomposition are
distinguishable from the angles they make with γ0. More precisely,

Theorem 1.3.1. There is a pants decomposition P0 = {αi : i = 1, 2, ..., 3g − 3} of
S that satisfies:

(1) γ0 and αi intersect minimally i.e. for αi non-separating ι(γ0, αi) = 1 and
for αi separating ι(γ0, αi) = 2, and

(2) the Φ(γ0, αi)s are mutually disjoint i.e. Φ(γ0, αi)∩Φ(γ0, αj) = ∅ for i 6= j.

Remark 1.4. We shall see in the proof of this theorem that there are infinitely many
such pants decompositions. It would be interesting to see if one can construct a pants
decomposition that makes distinct angles at each intersection. In our construction,
for αi separating, the two angles in Φ(γ0, αi) may be identical.
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With such a pants decomposition at hand, our marked rigidity result is:

Theorem 1.4.1. Let S′ be a closed hyperbolic surface of genus g. Let γ′0 be a simple
closed geodesic on S′ and P ′0 = {α′i : i = 1, · · · , 3g− 3} be a pants decomposition of
S′ such that for each i = 1, 2, ..., 3g − 3 :

(1) `S(αi) = `S′(α
′
i),

(2) ΘS(γ0, αi) = ΘS′(γ
′
0, α
′
i) and

(3) ΘS(γ0,∪3g−3
i=1 αi) = ΘS′(γ

′
0,∪

3g−3
i=1 α′i)

where γ0 and P0 = {αi : i = 1, 2, ..., 3g − 3} are as in Theorem 1.3.1. Then S′ is
isometric to S.

The idea now is to find a way of extracting information about γ0 and P0 from
the length-angle spectrum LΘ(S). For that we consider a sequence of simple closed

geodesics Tv̄n(γ0) indexed by v̄n = (v1,n, . . . , v3g−3,n) ∈ Z3g−3
+ . This Tv̄n(γ0) is the

geodesic freely homotopic to the simple closed curve

Dv1,n
α1
◦Dv2,n

α2
◦ · · · ◦Dv3g−3,n

α3g−3
(γ0),

that is obtained from γ0 by applying D
vi,n
αi , vi,n Dehn twists (see §2) along αi, to

γ0 for i = 1, 2, ..., 3g− 3. Here the αis are as in Theorem 1.3.1. In §3 we show that
the corresponding angle sets ΘS(γ0, Tv̄n(γ0)) in a specific manner encodes a lot of
information that we need about the αis. To give an idea of the type of information
these angle sets encode we begin by the following.

Definition 1.4.1. For any finite set A we denote the cardinality of A by #|A|.
Two diverging sequences of integers un and vn are called similar, denoted un ≈ vn,
if there is a k ∈ N such that |un − vn| ≤ k.

Let α, β be two simple closed geodesics on S with ι(α, β) = 1. Let βn = Tnα (β),
the geodesic freely homotopic to Dn

α(β), and let Cα ⊂ S denote the collar neighbor-
hood around α.

Theorem 1.4.2. Let ΘS(α, β) = (φ) and ΘS(β|Cα , βn|Cα) = (θn1 , θ
n
2 , ..., θ

n
m). Then:

(1) there is a partial monotonicity among θnj :
(a) if n > 0 then

θn1 > θn2 > ... > φ < ... < θnm−1 < θnm

(b) if n < 0 then

θn1 < θn2 < ... < φ > ... > θnm−1 > θnm

where the angles before and after φ correspond to the intersections between
β|Cα and βn|Cα in the two different halves of Cα \ α,

(2) for any ε > 0: #|{i : θni ∈ (φ− ε, φ+ ε)}| ≈ n.

Remark 1.5. We shall see in §4 that the numbers of θni s that appear before and
after φ, in part (1) of the theorem, differ by at most two.

Given the above, the complete arguments of the proof go as follows. Let S′ be
another closed hyperbolic surface of genus g′ with LΘ(S) = LΘ(S′). Without loss
of generality we may assume that g ≥ g′. Since LΘ(S) = LΘ(S′), for each n, there
are simple closed geodesics γ′n, δ

′
n on S′ such that

(`S(γ0), `S(Tv̄n(γ0)),ΘS(γ0, Tv̄n(γ0))) = (`S′(γ
′
n), `S′(δ

′
n),ΘS′(γ

′
n, δ
′
n)).

A priori the sequence γ′n depends on n. Since the number of simple closed geodesics
on S′ of length `S(γ0) is finite, up to extracting a subsequence, we have a fixed closed
geodesic γ′0 ∈ G(S′) such that

(`S(γ0), `S(Tv̄n(γ0)),ΘS(γ0, Tv̄n(γ0))) = (`S′(γ
′
0), `S′(δ

′
n),ΘS′(γ

′
0, δ
′
n)).
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The last part of the proof studies the sequence δ′n. Up to extracting a sub-
sequence, these geodesics converge to a geodesic lamination L. One of the most
important step, for the rest of the proof, is to use the structure of ΘS′(γ

′
0, δ
′
n) =

ΘS(γ0, Tv̄n(γ0)) from §4 to deduce that each minimal sub-lamination of L is a simple
close geodesic. With the assumption

lim
n→∞

vi+1,n

vi,n
= 0, for each i = 1, 2, ..., 3g − 2

we show, using results from §4, that each half-leaf of L spirals around some simple
closed geodesic α′i and the collection (α′i) contains at least 3g − 3 simple closed
geodesics. Since α′is are mutually non-intersecting and g′ ≤ g it follows that, in
fact g′ = g and the collection {α′1, · · · , α′3g−3} forms a pants decomposition P ′0 of
S′. Further analysis of the sequence δ′n via the convergence δ′n → L provides us the
following theorem that concludes the proof of Theorem 1 via Theorem 1.4.1.

Theorem 1.5.1. Let γ′0 and P ′0 = {α′i : i = 1, · · · , 3g−3} respectively be the simple
closed geodesic on S′ and the pants decomposition of S′ as above. Then for each
i = 1, 2, ..., 3g − 3:

(1) `S′(α
′
i) = `S(αi),

(2) ΘS′(γ
′
0, α
′
i) = ΘS(γ0, αi) and

(3) ΘS′(γ
′
0,∪

3g−3
i=1 α′i) = ΘS(γ0,∪3g−3

i=1 αi),

where γ0 and P0 = {αi : i = 1, 2, ..., 3g − 3} are as in Theorem 1.3.1.

1.6. Structure of the article. In §2 we recall some basic concepts and tools that
we are going to use in the later sections. Among other things, we recall (i) formal
definition of Dehn twist and (ii) the structure theorem for geodesic laminations.
The next section is devoted to two rigidity results Lemma 3.0.1 and Theorem 1.3.1.
We give proofs of these two results there. The next section §4 is the most impor-
tant section of this article from the technical point of view. We begin this section
by recalling asymptotic growth of the intersection numbers ι(γ, Tn1,··· ,nk(β)) for
simple closed geodesics α1, · · · , αk, β, γ with αis mutually disjoint. We then use
this asymptotic to study asymptotic growth of lengths of geodesics of the form
`(Tn1,··· ,nk(β)). Later in that section we develop qualitative and asymptotic prop-
erties of angle sets ΘS(γ, Tn1,··· ,nk(β)). The next section, §5, is devoted to the
construction of the pants decomposition in Theorem 1.3.1. We prove Theorem 1 in
§6. In the end we have an appendix where we explain some results that are used
in various parts of the article that are most likely known to experts.

2. Preliminaries

In this section we review some standard facts from the geometry of hyperbolic
surfaces that will be used in our study. The area formula of a hyperbolic geodesic
polygon is the simplest among these. Let G be a hyperbolic geodesic n-gon with
interior angles φ1, ..., φn. Then the area |G| of G is given by

|G| = (n− 2)π −
n∑
i=1

φi. (2.1)

2.1. Collars. Let α be a simple closed geodesic on S. The Collar Theorem says
that there is a collar neighborhood Cα ⊂ S of α which is isometric to the cylin-
der [−w(α), w(α)] × S1 with the metric dr2 + `2α cosh2 rdθ2 and for any two non-
intersecting simple closed geodesics α, β the collars Cα, Cβ are mutually disjoint.
The coordinates (r, θ) on Cα via this isometry are called the Fermi coordinates. For
an x ∈ Cα let (r(x), θ(x)) be its Fermi coordinates. Then r(x) denotes the signed
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distance of x from α and θ(x) denotes the projection of x on α when α is identified
with S1 [4, p-94].

2.2. Dehn twist. Dehn twist homeomorphisms are the most important tools used
in this paper. We use them, for example, to construct our sequence of simple closed
geodesics Tv̄n(γ0). For a more complete and detailed discussion of these we refer
the readers to [9, Chapter 3].

Let α be a simple closed geodesic on S and Cα ⊆ S be the collar neighborhood
of α. Fix a set of Fermi coordinates to identify Cα with [−w(α), w(α)]× S1. Take
T ≤ w(α) and consider the homeomorphism Dα of [−T, T ]× S1 ⊆ Cα given by

(r, θ)→ (r, θ + π − π

T
· r).

Since Dα fixes the two boundary circles {−T} × S1 and {T} × S1 pointwise, it
can be extended to the rest of the surface as identity. This homeomorphism (up
to isotopy) is called the Dehn twist around α. For a simple closed geodesic β by
Dα(β), called the Dehn twist of β along α, we mean the simple closed geodesic
freely homotopic to Dα(β). It is a standard fact that Dα(β) 6= β iff ι(α, β) 6= 0 [9,
Proposition 3.2].

2.3. End-to-end geodesic arcs. Fix a set of Fermi coordinates (r, θ) on Cα to
identify it with [−w(α), w(α)]× S1. With respect to this identification we consider
the curves in Cα that are graphs of smooth maps [−w(α), w(α)] → S1. We call
them end-to-end arcs. When such a curve is a geodesic we call it an end-to-end
geodesic arc. So, an end-to-end geodesic arc is basically a simple geodesic arc in
Cα that joins two points one in each component of ∂Cα. The end-to-end geodesic
arc with constant θ coordinate equal to φ is called the φ-radial arc and is denoted
by ηφ. An end-to-end geodesic arc that does not intersect at least one radial arc is
called an almost radial arc. For an end-to-end geodesic arc ξ by Dα(ξ) we denote
the end-to-end geodesic arc that is homotopic to Dα(ξ) under the end point fixing
homotopy.

Remark 2.2. For any end-to-end arc γ in Cα there is a unique end-to-end geodesic
arc χ in Cα that is homotopic to γ under the end point fixing homotopy. Also,
the number of intersection ι(γ1, γ2) between any two end-to-end arcs γ1, γ2 in Cα
is at least the number of intersection ι(χ1, χ2) between their respective geodesic
representatives χ1, χ2 under the end point fixing homotopy. These two facts can be
seen easily by taking lifts of the involved curves to H2.

Remark 2.3. Let ∂α1 = {−w(α)}×S1 and ∂α2 = {w(α)}×S1 be the two components
of ∂Cα. Let s1 = (−w(α), θ1) ∈ ∂α1 and s2 = (w(α), θ2) ∈ ∂α2 . It is not difficult to
observe that:

(1) if the θ1 = θ2 = φ then there is exactly one almost radial arc, ηφ, with end
points si ∈ ∂αi and

(2) if the θ1 6= θ2 then there are exactly two simple paths in S1 that join θ1

and θ2 each of which produce exactly one almost radial arc with end points
si ∈ ∂αi . One of these two arcs is a Dehn twist of the other along α.

2.3.1. Orientation of an end-to-end arc. Observe that the end-to-end arc Dα(ηφ)
is the graph of the map Ψ : [−w(α), w(α)]→ S1 that sends t to (φ+ π− π

T · t). We

consider the orientation of S1 such that this map is orientation preserving. Observe
that this orientation does not depend on φ but depends on the Fermi coordinates.

Fix a set of Fermi coordinates on Cα. For an end-to-end arc ξ in Cα we consider
the smooth function Ψξ : [−w(α), w(α)] → S1 whose graph is ξ. We say that
the orientation of ξ is positive (or negative) if Ψξ is orientation preserving (or
orientation reversing).
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γ

P0

Figure 1. Pants decomposition

2.4. Pants decomposition. For us a pants decomposition of a hyperbolic sur-
face S is a collection of mutually disjoint simple closed geodesics that divide the
surface into three holed spheres. In §2 and thereafter we shall consider pants de-
compositions of closed hyperbolic surfaces that intersect a given simple closed non-
separating geodesic minimally. Figure 1 is an example of such a hyperbolic surface
M of genus 3. The simple closed geodesic γ is given by the yellow curve and the
pants decomposition P is given by the red curves.

2.5. Geodesic laminations. A geodesic lamination on a hyperbolic surface S is
a closed set L which is a disjoint union of complete geodesics, called leaves of the
lamination. The simplest examples of such things are simple closed geodesics. A
little more complicated and most used one in this article are the limits of simple
closed geodesics under repeated Dehn twists. For a more complete and detailed
discussion of this topic we refer the readers to [7]. One of the most important
use of these laminations come with an associated measure, and the pair is called a
measured geodesic lamination. We shall not use the latter in this article.

2.5.1. A topology on GL(S). Let GL(S) denote the space of all geodesic laminations
on S. The Chabauty topology on GL(S) is the restriction of the Chabauty topology
on the space C(S) of all closed subsets of S. For detailed discussion of this topology
we refer to [7, Chapter I.3.1, Chapter I.4].

Remark 2.4. It is well-known that GL(S) is compact, separable and metrizable
with respect to the Chabauty topology.

Definition 2.4.1. (1) A subset of a geodesic lamination which itself is a ge-
odesic lamination is called a sub-lamination. A sub-lamination is called
proper if it is not the whole lamination.

(2) A lamination is called minimal if it does not have any proper sub-lamination.
A minimal sub-lamination of a lamination is a sub-lamination which is
minimal as a lamination.

(3) A leaf of a lamination is called isolated if each point on it has a neighborhood
(in S) that do not intersect any other leaf of the lamination.
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(4) We say that a leaf l spirals along one of its ends around a lamination K if
every lift of l to H2 shares an end point (at ∂H2) with an end point of one
of the leaves of some lift of K to H2.

In §5 we would have to deal with geodesic laminations without having prior
knowledge of their structure. In that situation we shall need the following structure
theorem of geodesic laminations [7, I.4.2.8. Theorem: Structure of lamination] for
further understanding our geodesic laminations.

Theorem 2.4.1. Let L be a geodesic lamination on a hyperbolic surface S of finite
area. Then L consists of disjoint union of finitely many minimal sub-laminations
K1, ...,Km and finitely many isolated leaves l1, ..., lp such that each li along one of
its ends spirals around one of the Kj.

For a simple closed geodesic (or a geodesic arc) γ and a geodesic lamination L
we can consider the angle set ΘS(γ, L) and the set of angles Φ(γ, L) in ΘS(γ, L) in
exactly the same way as before. In this case however ΘS(γ, L) ∈ [0, π]ω where ω is
the cardinality of ι(γ, L). When the last cardinality is infinite we have accumulation
points in Φ(γ, L).

Definition 2.4.2. We call a point φ ∈ Φ(γ, L) a accumulation point of ΘS(γ, L)
if there is an ordered sequence (θn) in ΘS(γ, L) that converges to φ. An ordered
set (φ1, ..., φk) of ΘS(γ, L) is called the set of accumulation points of ΘS(γ, L) if
φ1, ...φk represent all accumulation points of ΘS(γ, L) counting multiplicity.

2.5.2. Spiraling around a collection of geodesics. Let α1, · · · , αk be a collection of
mutually disjoint simple closed geodesics. Let γ0 be a simple closed geodesic such
that ι(αi, γ0) 6= 0 for each i = 1, · · · , k. For (n1, · · · , ni) ∈ Zk consider the geodesic
Tn1,i,··· ,nk,i(γ0) that is freely homotopic to

Dn1
α1
◦Dn2

α2
◦ · · · ◦Dnk

αk
(γ0).

Now let (n1,i, · · · , nk,i) ∈ Zk be a sequence such that the sign of nj,i be independent
of i. Denote the sign of nj,i by sign(j). As nj,i tend to (positive or negative) infinity
Tn1,i,··· ,nk,i(γ0) converges to a geodesic lamination

Lsign(1)α1,··· ,sign(k)αk(γ0)

that has exactly k closed leaves α1, · · · , αk. Rest of the leaves of this lamination
are isolated and so along each of their ends they spiral around one of the αi. Let `
be one such half-leaf that spirals around αi. In §1.3.1 we defined the orientation of
an end-to-end geodesic arc given fixed Fermi coordinates on Cαi . In a very similar
way we can define the orientation for `. Observe that as ` spirals around αi the
orientation of ` is positive if sign(i) is positive and negative if sign(i) is negative.

3. Marked Rigidity

In this section we prove the two rigidity results Lemma 3.0.1 and Theorem 1.4.1.
These results are motivated by the marked length rigidity of closed hyperbolic
surfaces due to Fricke-Klein [10]. As warm up exercise we treat compact hyperbolic
surfaces that are once holed tori with geodesic boundary. It is long known [6] (see
also [12]) that the length spectrum of any such surface determines the surface, up
to isometry.

Lemma 3.0.1. Let T and T ′ be two compact one holed torus with geodesic bound-
ary. Let (α, β) and (α′, β′) be two pairs of simple closed geodesics on T and T ′
respectively with ι(α, β) = 1 = ι(α′, β′). If

(`T (α), `T (β),ΘT (α, β)) = (`T ′(α
′), `T ′(β

′),ΘT ′(α
′, β′))

then T is isometric to T ′.
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Proof. We use cut and paste method to prove the lemma. We begin by cutting T
along α. This would result in a Y -piece Y(`T (α), `T (α), `0) where the triple marks
the lengths of the three boundary geodesics of the Y -piece. We shall first show that
the third length `0 is uniquely determined by our triple

(`T (α), `T (β),ΘT (α, β)). (3.1)

We begin by understanding what β looks like in Y(`T (α), `T (α), `0). In Figure
2 we consider our situation. The geodesic marked η has length `0. The three
black arcs joining pairs of boundary geodesics of Y(`T (α), `T (α), `0) are the mutual
perpendiculars. The red arc that joins the two copies of α represents β.

ηβ

α
ϴ

Figure 2. One holed torus

By a symmetry argument we obtain that the point of intersection of β and the
mutual perpendicular between the two copies of α is the mid-point of both of these
geodesic arcs. Now consider one of the triangles formed by two of these arcs and
one of the subarcs on (one of the copies of) α. By the angle ratio formula from
basic hyperbolic trigonometry:

sinh `p
sin θ

=
sinh `T (β)

2

sin π
2

⇒ sinh `p = sin θ · sinh
`T (β)

2
(3.2)

where 2`p is the length of the mutual perpendicular between the two copies of α
and (θ) = ΘT (α, β). Hence `p is determined by the data (3.1).

Now recall that any Y -piece is determined (up to isometry) by the lengths of its
three boundary geodesics. In particular 2`p is a function of `T (α) and `0. Fixing
the value of `T (α) consider the map `0 → 2`p. A simple trigonometric computation
implies that this map is injective. Hence by above `0 is determined by (3.1).

Finally we get that T \ α is isometric to T ′ \ α′. To conclude the theorem it
suffices to observe that there is a unique way of gluing the two copies of α (or α′)
in the boundary of Y(`T (α), `T (α), `0) (or Y(`T ′(α

′), `T ′(α
′), `0)) such that the red

arc becomes β (or β′) after the gluing. This follows from Lemma 3.2.1. �

Now we present a proof of Theorem 1.4.1. Let us begin by recalling it.

Theorem 1.4.1 Let S′ be a closed hyperbolic surface of genus g. Let γ′0 be
a simple closed geodesic on S′ and P ′0 = {α′i : i = 1, · · · , 3g − 3} be a pants
decomposition of S′ such that for each i = 1, 2, ..., 3g − 3 :
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(1) `S(αi) = `S′(α
′
i),

(2) ΘS(γ0, αi) = ΘS′(γ
′
0, α
′
i) and

(3) ΘS(γ0,∪3g−3
i=1 αi) = ΘS′(γ

′
0,∪

3g−3
i=1 α′i)

where γ0 and P0 = {αi : i = 1, 2, ..., 3g − 3} are as in Theorem 1.3.1. Then S′ is
isometric to S.

Proof. Let ι(γ0,∪3g−3
i=1 αi) = m = ι(γ′0,∪

3g−3
i=1 α′i). As one moves along γ0 the points

of intersection between γ0 and αis appear one after another. Recall that the or-
dering of these intersections is well defined only up to the action of the cyclic
permutation (1, 2, · · · ,m) and its inverse. For the pants decomposition obtained
from Theorem 1.3.1, up to a rearrangement of the αis, they appear along γ0 in the
cyclic order

α1 → α2 → ...→ α2g−1 → α2g−2 → α2g → ...→ α3g−3 → α2 → α1.

In the first step we show that, up to the action of the cyclic permutation (1, 2, · · · ,m)
and its inverse, the corresponding appearance of the α′is along γ′0 is identical i.e.

α′1 → α′2 → ...→ α′2g−1 → α′2g−2 → α′2g → ...→ α′3g−3 → α′2 → α′1.

To see this let αk appears just after αl along γ0 and let (φ1, φ2) be the ordered

subset of ΘS(γ0,∪3g−3
i=1 αi) corresponding to these two intersections. Observe that

φ1 ∈ ΘS(γ0, αl) = ΘS′(γ
′
0, α
′
l) and φ2 ∈ ΘS(γ0, αk) = ΘS′(γ

′
0, α
′
k). Since Φ(γ′0, α

′
i)∩

Φ(γ′0, α
′
j) = ∅ for i 6= j that is the only possibility as well! Hence the ordering

follows.
Now let αi, αj and αk bound a Y -piece in S. Then there is an ordering among

αi, αj and αk according to their appearance along γ0. In particular, up to a change
of indices, we may assume that αi appears exactly before αj and αk appear exactly
after αj (observe that αi, αj and αk may not appear consecutively!). By the above
ordering equality α′i, α

′
j and α′k appear identically along γ′0. Since geodesics from

a pants decomposition must intersect γ′0 before any other geodesics do, we obtain
that α′i, α

′
j and α′k determines a Y -piece.

Recall that a hyperbolic surface can be described as a collection of marked Y -
pieces and a set of relations for gluing pairs of identically marked boundary geodesics
of these Y -pieces [4]. In that setting the above observation basically says that S and
S′ can be constructed from identical collection of Y -pieces (obtained from S \ P0

or S′ \ P ′0) and the gluing relations possibly differ only by twists around different
geodesics (in P0 or P ′0).

Next we consider a Y -piece Y(αi, αj , αk) ⊂ S with boundary geodesics αi, αj and
αk. Let Y ′(α′i, α′j , α′k) ⊂ S′ be the corresponding Y -piece with boundary geodesics
α′i, α

′
j and α′k. Since `(αi) = `(α′i), Y(αi, αj , αk) is isometric to Y ′(α′i, α′j , α′k) via

an isometry that sends αi → α′i.

Lemma 3.2.1. Let Y be a pair of pants. Consider two boundary geodesics α1, α2

of Y . Let A be the collection of simple geodesic arcs in Y that joins α1 and α2.
Then every geodesic arc β in A is determined by the two angles β make with α1

and α2, (ΘY (β, α1),ΘY (β, α2)).

Proof. We argue by contradiction and assume that there are two such arcs β1, β2

such that for each i = 1, 2

ΘY (β1, αi) = ΘY (β2, αi). (3.3)

There are two cases that need separate consideration: (i) β1 ∩ β2 = ∅ and (ii) β1 ∩
β2 6= ∅. In the first case it is easy to observe that β1 and β2 along with subarcs of α1

and α2 forms a (contractible) geodesic rectangle. We reach the desired contradiction
by calculating the area of this rectangle using (3.3) and the area formula 2.1. In
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the second case we have a contractible triangle bounded by subarcs of β1 and β2

and a subarc of either α1 or α2. The area calculation of this triangle using (3.3)
again provides the desired contradiction. �

Corollary 3.1. Let T be a hyperbolic one-holed torus with geodesic boundary. Let
α be a simple closed geodesic on T . Assume that we have a simple geodesic arc
γ that joins two points on ∂T and intersects α exactly once. If the two angles in
ΘT (γ, ∂T ) are identical then T has an isometry that interchanges the two points of
intersection between ∂T and γ.

Proof. Cut T along α to get the pair of pants Y and denote the two copies of α on
∂Y by α1 and α2. Consider the two components of γ \ α. Denote the component
that joins ∂T and αi by γi.

Observe that (ΘT (γ1, ∂T ),ΘT (γ1, α1)) = (ΘT (γ2, ∂T ),ΘT (γ2, α2)). Now Y has
a rotational isometry around the midpoint of the mutual perpendicular between
α1 and α2. By the last lemma we conclude that γ2 is the image of γ1 under this
isometry. �

Now we are ready to finish the proof of Theorem 1.4.1. By the lemma above we
observe that the isometry between Y(αi, αj , αk) and Y(α′i, α

′
j , α
′
k) actually sends

γ0|Y(αi,αj ,αk) → γ′0|Y′(α′i,α′j ,α′k). (3.4)

Hence it suffices to prove that there is essentially a unique way of gluing the pairs
of pants obtained from P0 or equivalently from P ′0. The above lemma (and the
assumption that Φ(γ0, αi) are pairwise disjoint) imply that there essentially is no
choice along non-separating αis. Along a separating αi there is a possibility of a
twist that would interchange the two points of intersections between γ0 and αi.
Since the ordering of appearance of αi along γ0 is fixed this can not happen at any
but those αis that bound one holed torus. By the last corollary it is clear that even
if there are such choices the resulting surfaces obtained from different choices are
isometric. �

4. Dehn twist: length and angles

For the definition of Dehn twist homeomorphisms we refer the reader to §1. This
section is devoted to the understanding of the following two questions. Let α, β, γ
be three simple closed geodesics on S.

Question 4.1. How does the length of Dnα(β) grow with respect to the quantities
n, ι(α, β), `(α) etc ?

Question 4.2. Is there any structural property inside an angle set and in particular
in ΘS(γ,Dnα(β)) ? If so how do they change with respect to n ?

Of course we need to be more precise about the last question. We refer the
reader to §4.3 for this.

4.1. Intersection. In our answer to these two questions we use known results
on how the intersection number ι(γ,Dnα(β)) grow with respect to the numbers
n, ι(α, β), ι(α, γ) and ι(β, γ). The following three estimates are from [9, Propo-
sition 3.2] and [14, Lemma 4.2]. Recall from the introduction that for a simple
closed geodesic β and a tuple (n1, ..., nk) ∈ Zk we denote the closed geodesic freely
homotopic to Dn1

α1
◦Dn2

α2
· · ·Dnk

αk
(β) by Tn1,...,nk(β).

Proposition 4.1. For any two simple closed geodesics β, γ:

(1) ι(Tnβ (γ), γ) = |n|ι(γ, β)2.
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Let α1, ..., αk be k mutually disjoint simple closed geodesics on S. Then for any two
simple closed geodesics β, γ

(2) ι(Tn1,...,nk(β), γ) ≥
k∑
i=1

(|ni| − 2)ι(αi, β)ι(αi, γ)− ι(γ, β),

(3) ι(Tn1,...,nk(β), γ) ≤
k∑
i=1

|ni|ι(αi, β)ι(αi, γ) + ι(γ, β).

One more topological result on the intersection number would be important in
our later discussions. Let A be either Cα or one of the two components of Cα \ α.
Recall that in §2 we defined end-to-end geodesic arcs in Cα. These are basically
simple geodesic arcs in Cα that join two points one in each component of ∂Cα. We
define end-to-end geodesic arcs in A, when A is not Cα, similarly.

Lemma 4.1.1. Let β1, β2 be two non-intersecting end-to-end geodesic arcs in A.
Then for any end-to-end geodesic arc η in A one has:

|ι(η, β1)− ι(η, β2)| ≤ 1.

Proof. Without loss of generality we may assume that

ι(η, β2) ≥ ι(η, β1) and ι(η, β2) > 1.

Fix two points of intersection x, y between η and β2 that occur consecutively along
η and let η′ be the subarc of η lying between x and y. It suffices to prove that η′

intersects β1 at least once. We argue by contradiction and assume that η′ and β1

are disjoint. Cutting Cα along β1 we obtain a rectangle Rα(β1). Since β2 and η′

do not intersect β1 both of them are contained in Rα(β1). In particular we have
a loop formed by η′ and the subarc of β2 between x and y which is contained in
Rα(β1), a topological disc. This is an impossibility. �

4.2. Lengths. Now we consider the length of Dnα(β). The next estimate is probably
well-known to experts but the author was unable to locate a reference.

Proposition 4.2. Let α1, α2, ..., αk be k mutually disjoint simple closed geodesics
on S. Then for any β ∈ G(S) there exist non-negative integers ki = ki(αi, β) such
that for any (n1, n2, ..., nk) ∈ Zk with |ni| sufficiently large one has:

(1)`(Tn1,...,nk(β)) ≤
k∑
i=1

ι(αi, β)|ni|`(αi) + `(β)

(2)

k∑
i=1

ι(αi, β)(|ni| − ki)`(αi) ≤ `(Tn1,...,nk(β)).

Proof. For the upper bound observe thatDn1
α1
◦Dn2

α2
· · ·Dnk

αk
(β) is freely homotopic to

the union of β and ι(αi, β)|ni| copies of αi for i = 1, ..., k after removing the points
intersection properly [9]. Since Tn1,...,nk(β) is the geodesic in this free homotopy
class, the upper bound follows.

For the lower bound we consider the collar Cαi ⊂ S around αi. Since Cαi and Cαj
are mutually disjoint for i 6= j it suffices to consider the length of Tn1,n2,...,nk(β)
restricted to each Cαi . By Lemma 8.0.1 in the Appendix for any simple closed
geodesic δ we have:

`(δ|Cαi ) ≥ (ι(ηi, δ)− 2ι(αi, δ))`(αi),
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where ηi is an almost radial (see §1.1) arc in Cαi . So it suffices to find a simple
closed geodesic whose restrictions to Cαi has at least one almost radial arc ηi such
that

ι(Tn1,...,nk(β), ηi) ≥ ι(β, αi)(|ni| − ki), (4.3)

for some ki = k(αi, β). Observe that by a similar argument as in the first paragraph
(of this proof) we can easily see that for any such geodesic arc ηi we have the upper
bound

ι(Tn1,...,nk(β), ηi) ≤ ι(β, αi)|ni|+ ι(β, ηi). (4.4)

Let γ be a geodesic on S that intersects all the αis for i = 1, ..., k. Replacing γ
by certain combination of Dehn twists of γ along αis, if necessary, we can assume
that each sub-arc of γ in each Cαi is an almost radial arc. Applying Proposition
4.1(2) to γ along with Lemma 8.1.1 from the Appendix we have n = n(γ, α1, ..., αk)
such that

k∑
i=1

ι(Tn1,...,nk(β)|Cαi , γ|Cαi ) ≥
k∑
i=1

(|ni| − 2)ι(αi, β)ι(αi, γ)− ι(γ, β)− n. (4.5)

To complete the proof we argue by contradiction and assume that there is a sequence
(n1,j , ..., nk,j)j such that for any geodesic arc η appearing as subarcs of γ|Cα1

we
have

ι(Tn1,j ,...,nk,j (β), η) < (|n1,j | − k(n1,j))ι(β, αi) (4.6)

where k(n1,j)→∞ as |n1,j | → ∞. By (4.5) we have

k∑
i=1

ι(Tn1,...,nk(β)|Cαi , γ|Cαi ) ≥
k∑
i=1

(|ni| − 2)ι(αi, β)ι(αi, γ)− ι(γ, β)− n.

Using (4.6) we get

k∑
i=2

ι(Tn1,...,nk(β)|Cαi , γ|Cαi )−
k∑
i=2

(|ni| − 2)ι(αi, β)ι(αi, γ)

≥ (k(n1,i)− 2)ι(αi, β)ι(αi, γ)− ι(γ, β)− n→∞
as n1,i →∞. This is contradictory to by (4.4). �

Remark 4.7. By the last part of the proof it follows that for any γ, β and α1, · · · , αk
as above we have

ι(Tn1,...,nk(β)|Cαi , γ|Cαi ) ≈ |ni|ι(β, αi)ι(γ, αi) (4.8)

where the implied constant may depend on the involved geodesics.

4.3. Angles. Here we study some structural properties of angle sets. In the simplest
case we take two simple closed geodesics α and β with ι(α, β) = 1 and consider the
sequence βn = Dnα(β). Our goal is to understand ΘS(β, βn). For our purpose it
would be sufficient to understand ΘS(β|Cα , βn|Cα). We begin our study by counting
the number of intersections between β and βn lying in the two components of Cα\α.
It is reasonable to believe that these two numbers are approximately the same. Since
this fact is important for us we start by giving a proof of this fact.

4.3.1. End-to-end geodesic arcs. Observe that for any simple closed geodesic β,
any of its subarcs in Cα is, what we called, an end-to-end geodesic arc. Recall
that an end-to-end arc is a smooth simple curve on Cα that are graphs of func-
tions [−w(α), w(α)]→ S1, where we use the Fermi coordinates to identify Cα with
[−w(α), w(α)] × S1. Recall further that for an end-to-end geodesic arc β in Cα
by Dmα (β) we denote the geodesic freely homotopic to Dm

α (β) under the end point
fixing homotopy.
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Lemma 4.8.1. Let ξ, η be two end-to-end geodesic arcs such that they have the
same end points on ∂Cα. Then Dmα (ξ) = η for some m ∈ Z.

Proof. It is enough to show that Dm
α (ξ) is homotopic to η, for some m ∈ Z, under

the end point fixing homotopy. To show this consider any two points of intersection
between ξ and η that occur consecutively along η. Consider the piecewise geodesic
loop formed by the subarc of ξ and η between these two points. This loop is freely
homotopic to α. Using the definition of the Dehn twists homeomorphism Dα it is
not difficult to see that one of Dα(ξ) and D−1

α (ξ) does not have the latter loop, up
to isotopy. As a result one of them intersects η one less number of times than ξ.
Repeating this procedure we get m ∈ Z such that Dm

α (ξ) is homotopic to η. �

Lemma 4.8.2. Let ξ and η be two end-to-end geodesic arcs in Cα. Then the
numbers of intersection between ξ and η in the two components of Cα \ α differ by
at most two.

Proof. We first prove the Lemma with an extra assumption that all four end points
of ξ and η have the same θ coordinate equal to ψ. By Lemma 4.8.1 we know that
ξ and η are Dehn twists of the ψ-radial arc ηψ (see §1.1) of certain order i.e.

Dmα (ηψ) = ξ and Dnα(ηψ) = η

for some m,n ∈ Z.
Now recall the Fermi coordinates (r, θ) on Cα. Using these coordinates consider

the embedding of Cα in R3 via the map (r, θ) → (cos θ, sin θ, r). Recall that in
the Fermi coordinates α is identified with S1. Let a : S1 → S1 be the antipodal
map. Now consider the line Lψ in R3 that intersects Cα orthogonally at the points
(cosψ, sinψ, 0) and (cos a(ψ), sin a(ψ), 0)). The rotation of R3 by an angle of π
with axis Lψ when restricted to Cα provides an isometry Rψ of Cα. It is easy to
check that Rψ interchanges the two components of Cα \α. Moreover, using explicit
expressions one can observe that Dk

α(ηψ) are invariant under Rψ. By uniqueness
Dkα(ηψ) are also invariant under Rψ for each k. It follows that the numbers of
intersections between Dmα (ηψ) = ξ and Dnα(ηψ) = η in the two components of Cα \α
are identical.

To prove the general case we first observe that for any end-to-end geodesic arc
χ whose two end points have different θ coordinates one can always find another
end-to-end geodesic arc ζ disjoint from χ whose both end points have the same θ
coordinates. To see this we use Lemma 4.8.1 to express χ as the Dehn twist of
certain order of an almost radial arc χ0 i.e. χ = Dmα (χ0) for some integer m. Now
by definition χ0 does not intersect at least one radial arc say ηφ. Then a candidate
for our ζ is Dmα (ηφ). The general case now follows from Lemma 4.1.1. �

4.3.2. Angle set and intersections. The fact that the two halves of Cα \ α contains
approximately the same number of intersections between any two end-to-end geo-
desic arcs is not yet visible in their angle set. A part of our next result would make
it so. Fix one set of Fermi coordinates on Cα \α. With respect to these coordinates
consider the orientation of α from §1.3.1.

Let γ be an end-to-end geodesic arc in Cα and x be the point of intersection
between γ and α. Let π : H2 → S be a fixed universal covering such that π(0) = x
and denote the corresponding lifts of α and γ by the same alphabet. Observe
that the above orientation of α corresponds to the orientation of the lift of α that
decreases the height. Consider Figure 3 where the left column corresponds to
situations in Cα ⊂ S and the right column corresponds to one set of lifts of the
involved geodesics to H2.

Theorem 4.8.1. Let ΘS(γ, α) = (φ). Let ξ be another end-to-end geodesic arc
with ΘS(γ, ξ) = (θ1, θ2, ..., θm). Then:
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(1) either

θ1 > θ2 > ... > φ < ... < θm−1 < θm

or

θ1 < θ2 < ... < φ > ... > θm−1 > θm

where the angles before and after φ correspond to the intersections between
γ and ξ that occur in the two different halves of Cα \ α,

(2) for any ε > 0 the cardinality #|{j : θj ∈ (φ− ε, φ+ ε)}| ≈ m.

α
γξ
α

γ

Figure 3. Twists and their lifts

Proof. We begin by making the observation that θi does not depend on the orien-
tation of γ or ξ. Since the results we want to prove are qualitative it is enough
to consider the angles corresponding to the points of intersection between γ and ξ
lying in one of the halves of Cα \ α. Without loss of generality let us consider the
right half {(r, θ) : 0 ≤ r ≤ w(α)} of Cα \ α with respect to the fixed set of Fermi
coordinates on Cα.

By Lemma 4.8.1 we know that γ and ξ are Dehn twists of certain order of
almost radial arcs. Using Remark 2.3 we can further say that there are almost
radial end-to-end geodesic arcs γ0, ξ0 such that for some m1,m2 ∈ Z

γ = Dm1
α (γ0), ξ = Dm2

α (ξ0) (4.9)

with γ0 and ξ0 are either identical or disjoint. The first monotonicity appears for
m2−m1 > 0 and the second appears for m2−m1 < 0. Observe that γ and Dm1

α (ξ0)
are either identical or disjoint. So the sign of m2 −m1, in some sense, measures
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the amount of Dehn twists applied to ξ with respect to γ. Let us assume that
m2 −m1 > 0, the other case can be dealt with similarly.

Recall that x is the point of intersection between γ and α. Let y be the point
of intersection between ξ and α. Now consider the points of intersection x1, x2, ...
between γ and ξ arranged in the ascending order of their distances from x measured
along γ (lying in the right half of Cα \ α). For each xi consider the subarc γi of
γ between xi and x and the subarc ξi of ξ between xi and y. Let γi : [0, 1] → Cα
and ξi : [0, 1] → Cα be the parametrization of γi and ξi respectively such that
γi(0) = xi = ξi(0) and γi(1) = x, ξi(1) = y. By Lemma 8.2.1 there is a smooth
homotopyHi : [0, 1]×[0, 1]→ Cα between γi and ξi that has the following properties:
Hi(s, 0) = γ(s), Hi(s, 1) = ξi(s), Hi(0, t) = xi and Hi(1, .) maps [0, 1] to S1 ' α.
Moreover, the last map is orientation reversing with respect to the orientation of
S1 ' α. Lifting this homotopy to H2 we obtain lifts of ξi, γ and α that forms a
geodesic triangle Ti. Since Hi(1, .) : [0, 1] → S1 ' α is orientation reversing, using
the orientation of our fixed lift of α, we conclude that the lift of Hi(1, .) increases
height. Making proper choices of these lifts we obtain that Ti ⊂ Ti+1. Hence (1)
follows from the area comparison of these two triangles via (2.1).

For the second part we need to consider end-to-end geodesic arcs ξ in Cα that
intersects γ large number of times. Using Lemma 4.8.1 we observe that it suffices to
consider end-to-end geodesic arcs of the form (Dkα(η)) where η is an almost radial
arc in Cα. We shall first study the geodesic laminations that are obtained as limits
of end-to-end geodesic arcs of this last form. Let L be one such geodesic lamination
and consider the angle set ΘS(γ, L) = (φ1, φ2, ....). The structure of L is easy to
describe. L consists of three leaves one of which is α. Rest of the two leaves are
isolated. For each component of Cα \ α there is one leaf of L that spirals around α
staying in this component. Since α is the only minimal component of L it follows
that ΘS(γ, L) has exactly one point of accumulation that corresponds to the point
of intersection between γ and α i.e. φ. Hence we have

|{φi : φi /∈ (φ− ε, φ+ ε)}| ≤ NL(ε)

for some integer NL(ε) that a priori depends on L. To understand this dependence
observe first that L is determined by two things: (i) the direction of spiraling of
the two isolated leaves around α (see §2.4.2) and (ii) the two end points of L on
the two components of ∂Cα. Since there are two possible directions in which the
two isolated leaves of L may spiral around α it suffices to take care of these two
cases separately.

Let L± be the collection of all those lamination (as above) whose isolated leaves
respectively have ± direction of spiraling around α. Hence any two laminations
in L+ (or in L−) differ only by their end points on ∂Cα. Observe that S1 acts by
isometry on Cα and each component of Cα \ α via the θ coordinate of our Fermi
coordinates. By applying appropriate amount of rotation to each leaf (to match
the two end points) any lamination in L+ (or in L−) can be obtained from any
other. It is not difficult to observe that the effect of these rotations on NL(ε) is
upper semi-continuous with respect to the angles of rotation. Hence NL(ε) can be
made independent of the lamination. Let us denote this uniform bound by Nα(ε).
Finally for any lamination L as above and ΘS(γ, L) = (φ1, φ2, ....) we have

|{φi : φi /∈ (φ− ε, φ+ ε)}| ≤ Nα(ε). (4.10)

Now we are ready to prove the second part of our theorem. We argue by contradic-
tion. So we have an ε > 0 for which we have almost radial arcs ξj and a sequence

of integers (nj) with ΘS(γ,Dnjα (ξj)) = (θj1, · · · , θjmj ) such that

mj −#|{i : θji ∈ (φ− ε, φ+ ε)}| → ∞. (4.11)
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Now extract a subsequence of ξj that converges to an end-to-end geodesic arc ξ0.
Up to extracting subsequences, the limits of Dnjα (ξj) and Dnjα (ξ0) are the same. Let
L0 be this limit and let ΘS(γ, L0) = (φ0

1, φ
0
2, · · · ). The convergence Dnjα (ξj) → L0

via (4.11) implies that

|{φ0
i : φ0

i /∈ (φ− ε, φ+ ε)}| =∞

which is contradictory to (4.10) via the convergence Dnjα (ξ0)→ L0 . �

4.3.3. The general case. Now let γ and α1, · · · , αk are as in §3.2. Let η be a simple
closed geodesic which we would twist along different αi. Assume that η intersects
each αi. Recall that Tn1,...,nk(η) denotes the geodesic in the free homotopy class of
Dn1
α1
◦ · · · ◦Dnk

αk
(η). By Remark 4.7 and Lemma 4.1.1 we know that for components

γj of γ|Cαi and ηj of Tn1,··· ,nk(η)|Cαi the number of intersections ι(γj , ηj) ≈ |ni|.
Now we divide γ into different pieces γ = ∪lj=1γj such that a γj is contained in

either one of the Cαi or in the complement of all these collars. Assume that γj and
γj+1 occur consecutively along γ. So

ΘS(γ, Tn1,··· ,nk(η)) = (ΘS(γ1, Tn1,··· ,nk(η)), · · · ,ΘS(γl, Tn1,··· ,nk(η))).

Now let Φ(γ, Tn1,··· ,nk(η)) = {ψ1, · · · , ψp} where ψis are distinct. Let ε0 be the
minimum distance between any two distinct ψi, ψj . For each i = 1, 2, ..., k let Ii be
the collection of j for which γj ⊂ Cαi .

Theorem 4.11.1. Assume that ni → ∞ for i = 1, 2, ..k. For j ∈ Ii let φj be the
angle of intersection between γj and αi. For any ε > 0 let Pεφj (γ, Tn1,...,nk(η)) be

the ordered subset of ΘS(γ, Tn1,...,nk(η)) consisting of angles in ΘS(γj , Tn1,...,nk(η))
with magnitude in (φj − ε, φj + ε). Then for any ε < ε0 one has

#|Pεφj (γ, Tn1,··· ,nk(η))| ≈ ι(αi, η)ni. (4.12)

On the other hand, for j /∈ ∪ki=1Ii the cardinality of ΘS(γj , Tn1,...,nk(η)) is uniformly
bounded independent of (n1, . . . , nk).

Proof. The first part follows from Theorem 4.8.1 and Remark 4.7. The second part
follows from Lemma 8.1.1 in the Appendix. �

Remarks 4.13. (1) As in §1.4.2 consider a sequence (n1,i, n2,i, ..., nk,i) such that
Tn1,i,...,nk,i(η) → Lsign(1)α1,...,sign(k)αk(η) where sign(j) denotes the limiting sign of

the sequence (ni). Observe that ΘS(γ,∪ki=1αi) is recognizable from the collection
(ΘS(γ, Tn1,j ,...,nk,j (η)))j.

(2) Fix γ, α1, · · · , αk and ε < ε0 and consider the asymptotic in (4.12). A priori
it depends on η. This dependence is uniform for η ∈ N (m1, · · · ,mk, l) (see Lemma
8.1.1 in the Appendix). To see this, by Theorem 4.8.1(2), it suffices to observe
that all but finitely many points of intersections between γ and Tn1,i,...,nk,i(η), in a

uniform way, stays inside ∪ki=1Cαi . This is the statement of Lemma 8.1.1 proved
in the Appendix.

We end this section with a description of ΘS(γ, L) where γ is an end-to-end arc
in Cα and L is a geodesic lamination in Cα that has exactly two leaves one of which
is α and the other, `, starts at a point on ∂Cα and spirals around α staying entirely
in one of the components of Cα \ α.
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γ
β L

Figure 4. Spiral

Lemma 4.13.1. Let ΘS(γ, α) = (φ) and ΘS(γ, L) = (θ1, · · · , θn, · · · ). Then the
sequence (θi) is strictly monotone and converges to φ.

Proof. Arguments here are very similar to those in the proof of Theorem 4.8.1.
Recall that we have fixed one set of Fermi coordinates om Cα and with respect
these coordinates there is a precise direction in which ` spirals around α. Assume
that this direction is negative. The case of positive direction is very similar.

Taking one set of lifts of α, γ and L our current situation looks like Figure 4.
To prove the monotonicity between θi and θj we compare the areas of the two
triangles formed by the two lifts of L corresponding to θi and θj with the fixed lifts
of α, γ. For the second part we use Theorem 2.4.1 to conclude that each point of
accumulation of ΘS(γ, L) corresponds to a point of intersection between γ and a
minimal sub-lamination of L. Since L has exactly one minimal component, α, the
only limit of (θi) is φ. �

Remark 4.14. Using the description of Lsign(1)α1,...,sign(k)αk(η) from §1.4.2, the
set up from Theorem 4.11.1 and the above lemma it follows that the ordered set of
accumulation points of ΘS(γ, Lsign(1)α1,...,sign(k)αk(η)) is precisely ΘS(γ,∪ki=1αi).

5. Proof of Theorem 1.3.1

There are probably many different ways of finding P0 once γ0 is chosen. We
describe one such method. We shall first choose 2g − 2 non-separating simple
closed geodesics that make mutually disjoint set of angles with γ0 and divides S
into X-pieces (four holed spheres with geodesic boundary). Let us start by choosing
one non-separating simple closed geodesic α1 that intersects γ0 exactly once. Up
to applying a diffeomorphism, we may assume that γ0 and α1 are as in Figure 5.

Now consider another simple closed geodesic β2 as the green curve in Figure 5.
It also intersects γ0 exactly once and does not intersect α1. If Φ(γ0, α1) 6= Φ(γ0, β2)
then we choose α2 = β2. If Φ(γ0, α1) = Φ(γ0, β2) then we modify β2 as follows.
Consider a simple closed geodesic η2, as the purple curve in Figure 5, that does not
intersect α1and γ0 but intersects β2 exactly twice. Observe that Dη2(β2) intersects
γ0 exactly once. Moreover we have the following monotonicity.
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γ0

η2β2

α1

Figure 5. Construction of P0

Claim 5.0.1. Let Θ(γ0, β2) = (φ1) and Θ(γ0,Dη2(β2)) = (ψ1). Then φ1 > ψ1.

γ0 β2

η2

Figure 6. For separable geodesics

Proof. As in the proof of Theorem 4.8.1 we would lift γ0, β2 and Dη2(β2) to H2 and
compare the angles there. For that we consider the point of intersection y0 between
γ0 and β2. In Figure 6 the light green curve represents β2, the magenta curve
represents η2, the deep blue curve represents Dη2(β2) and the red arc represents an
arc of γ0 corresponding to the angle φ1. Now fix one set of lifts of γ0 and β2 to H2

that intersect each other at a fixed point y.
Fix one set of Fermi coordinates on Cη2 and orient η2 according to the orientation

explained in §1.3.1 via these set of coordinates. Observe that η2 and β2 intersect
at two points and these two points divide β2 into two geodesic arcs one of which
contains y0. Denote this last arc by aβ2 and without loss of generality assume that
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this latter arc’s restriction to Cη2 is contained in the left half of Cη2 \ η2. Observe
that η2 and Dη2(β2) also intersect at two points and these two points divide Dη2(β2)
into two geodesic arcs one of which intersects aβ2 . Denote this arc by aDη2 (β2). By

Lemma 8.3.1 we have parametrization of aβ2
: [0, 1]→ S and aDη2 (β2) : [0, 1]→ S of

these two arcs and a smooth homotopy H : [0, 1]× [0, 1]→ S that has the following
properties: H(s, 0) = aβ2

(s), H(s, 1) = aDη2 (β2)(s) and H(0, t), H(1, t) maps [0, 1]
to η2. Moreover these last two maps are orientation preserving with respect to the
orientation of η2.

To lift this homotopy to H2 we consider two lifts of η2 as the two purple curves
in Figure 7. Observe that the above orientation of η2 provides orientations of these
two geodesics. This induced orientation increases height of the left lift and decreases
height for the right lift. Thus lifting H to H2 we obtain Figure 7. Now it is evident
that there is a point of intersection x between the lifts ãβ2

of aβ2
and ãDη2 (β2) of

aDη2 (β2).

η2

α2

β2

γ0

Figure 7. Lifted on H2

We have two cases. First, x and y are identical. In this case our claim follows
from the property that H moves the two end points of ãβ2

along the two lifts of
η2 along the orientation η2 (on S). In the second case x and y are distinct points.
From Figure 7 we can assume that the homotopy H between ãβ2 and ãDη2 (β2) is a
rotation around x sending ãβ2 to ãDη2 (β2).

Observe that x divides ãβ2
into two connected components. Let b̃β2

be the

closure of the component that contains y. So only the right lift of η2 intersects b̃β2 ,

say at z, and H homotopes b̃β2
to a subarc b̃Dη2 (β2) of ãDη2 (β2). The monotonicity

now follows from the positivity of the area of the triangle formed by b̃Dη2 (β2), b̃β2

and the image of y under H that is a subarc of the fixed lift of γ0. �

So we take α2 = Dη(β2). We can repeat this procedure until we get a collection of
non-separating simple closed geodesics α1, ..., α2g−2 that divide S into a collection
of X-pieces. Figure 8 explains this situation. In each of these X pieces we have the
situation as in Figure 9 where the red arcs are the subarcs of γ0.
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α2

α1α3

α4

α5

α6

Figure 8. All non-separating geodesics

Here we consider two simple closed geodesics β and η as in Figure 9 where β is
separating and intersects γ0 twice and η is non-separating and do not intersect γ0.

γ0

η

β

Figure 9. Separating geodesics

Observe that this situation is very similar to the situation for non-separating
geodesics above. The only difference in this situation is that now we have two
subarcs of γ0 instead of one. Arguments in the proof of Claim 5.0.1 work for each
of these two arcs. Hence sufficient number of Dehn twist along η would make sure
that Φ(γ0,Dnη (β)) is disjoint from any finite collection of angles.

6. Proof of the Theorem 1

In this section we use the asymptotic growth of lengths and asymptotic structure
of angle sets from §3 along with the theory of geodesic laminations to prove Theorem
1. So we consider two closed hyperbolic surfaces S, S′ with identical length-angle
spectrum. Let the genus of S and S′ be g and g′ respectively with g ≥ g′.

We begin by considering a simple closed non-separating geodesic γ0 on S and a
pants decomposition P0 = {αi : i = 1, · · · , α3g−3} of S provided by Theorem 1.3.1.
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Now we fix a sequence v̄n = (v1,n, · · · , v3g−3,n) ∈ Zn>0 such that limn→∞ vi,n = ∞
for each i and

lim
n→∞

vi+1,n

vi,n
= 0 for each i = 1, · · · , 3g − 2. (6.1)

Then we consider the sequence of simple closed geodesics Tv̄n(γ0), in the free ho-
motopy class of

Dv1,n
α1
◦Dv2,n

α2
◦ · · · ◦Dv3g−3,n

α3g−3
(γ0).

As n tends to infinity the sequence of closed geodesics Tv̄n(γ0) converge to the
geodesic lamination Lα1,··· ,α3g−3

(γ0). Since LΘ(S) = LΘ(S′) we have simple closed
geodesics γ′n, δ

′
n on S′ such that

(`S(γ0), `S(Tv̄n(γ0)),ΘS(γ0, Tv̄n(γ0))) = (`S′(γ
′
n), `S′(δ

′
n),ΘS′(γ

′
n, δ
′
n).

A priori γ′n depends on n. Using the standard fact that the number of simple closed
geodesics on any closed hyperbolic surface with length equal to (or bounded from
above by) a fixed number is finite we can assume, up to extracting a subsequence,
that we have a fixed simple closed geodesic γ′0 such that

(`S(γ0), `S(Tv̄n(γ0)),ΘS(γ0, Tv̄n(γ0))) = (`S′(γ
′
0), `S′(δ

′
n),ΘS′(γ

′
0, δ
′
n))

for some simple closed geodesics δ′n on S′. Our goal now is to understand these
simple closed geodesics δ′n. By Remark 2.4, up to extracting a further subsequence,
δ′n converges to a geodesic lamination. We denote this geodesic lamination by L.
Let Lγ′0 be the smallest sub-lamination of L that contains all those leaves of L
that intersect γ′0. Hence ΘS′(γ

′
0, L) = ΘS′(γ

′
0, Lγ′0). By Theorem 2.4.1 we have a

finite collection of minimal sub-laminations K1, ...,Km whose complement in Lγ′0 is
a finite union of isolated leaves and each of these isolated leaves, along each of its
ends, spirals around one of the Ki. Let K1, ...,Kl are those minimal sub-laminations
of Lγ′0 that intersect γ′0.

Lemma 6.1.1. Each angle of intersection between γ′0 and Ki is a point of accumu-
lation of ΘS′(γ

′
0, Lγ′0) and every point of accumulation of ΘS′(γ

′
0, Lγ′0) is an angle

of intersection between γ′0 and one of the Kis.

Proof. Observe first that each Ki is also a minimal component of L. Since L is the
limit of a sequence of simple closed geodesics it follows that if Ki is a simple closed
geodesic then there is a leaf of L that spirals around Ki. In particular this spiraling
leaf must be in Lγ′0 . Now we have two possible type of minimal components: not
isolated and isolated. If Ki is not isolated then the lemma follows from the definition
(of not isolated). If Ki is isolated then it follows from the above observation that
there is at least one isolated leaf of Lγ′0 that spirals around Ki. For the reverse
direction observe that a point of accumulation of ΘS′(γ

′
0, Lγ′0) can not correspond

to an intersection between γ′0 and an isolated leaf. Hence we have the lemma by
Theorem 2.4.1. �

Now we use our angle sets explicitly to have deeper understanding of these Kis.
It is probably believable that if one Ki is not a simple closed geodesic then the
angle sets ΘS(γ′0, δ

′
n) should look significantly different from ΘS(γ′0, Tv̄n(γ0)). For

our purpose the next result would suffice.

Theorem 6.1.1. Each of K1, ...,Kl is a simple closed geodesic.

Proof. We begin by considering the angles in

Φ(γ0,∪3g−3
i=1 αi) = {Φ1, · · · ,ΦM}

where Φis are distinct. Let ε0 be the minimum of the distances between distinct
Φs. For any ε < ε0/4 the neighborhoods Iεi = (Φi− ε,Φi + ε) are at least ε distance
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apart. This makes sure that whenever we have an ordered subset (θ1, · · · , θk) of
some Θ(γ0, δvn) that has the property that

|θi − θj | < ε for all i, j and one of the θj ∈ Iεl

then θi ∈ Iεl for all i = 1, · · · , k. Now let φ be an angle of intersection between γ′0
and one of the Kis. We shall first show that φ = Φk for some k.

By the last lemma φ is a point of accumulation of ΘS′(γ
′
0, Lγ′0) and so we have

an ordered sequence (φ1, φ2, · · · ) of ΘS′(γ
′
0, Lγ′0) that converges to φ. We may

choose this sequence in such a way that φj ∈ (φ − ε
4 , φ + ε

4 ) for all j. Using
the convergence δ′n → L we have ordered subset (ψn1 , · · · , ψnkn) of Θ(γ′0, δ

′
n), for n

sufficiently large, such that ψni → φi as n → ∞ (in particular the size of these
ordered sets kn → ∞). We may further assume by making n larger if necessary
that each ψni ∈ (φi − ε

2 , φi + ε
2 ). This implies that

|ψni − ψnj | < ε for each i, j = 1, · · · , kn.

Using ΘS′(γ
′
0, δ
′
n) = ΘS(γ0, Tv̄n(γ0)) and the first paragraph of this proof we

conclude that each ψni ∈ Iεk for some k independent of i. Since we have finitely
many Φks, up to extracting a subsequence, we may assume that each ψni ∈ Iεk for
some fixed k independent of i and n. Now let Φk be an angle of intersection between
γ0 and αl. By Theorem 4.11.1 it follows that if we choose ε sufficiently small then
we can make sure, up to discarding a few angles if necessary, that (ψn1 , · · · , ψnkn) is
an ordered subset of Θ(γ0|Cαl , Tv̄n(γ0)|Cαl ). Depending on if αl is separating or not
we have two cases. If αl is non-separating then Φk is the only angle of intersection
between αl and γ0. If αl is separating then we have two points of intersection
between αl and γ0. If both the angles at these two intersections are equal to Φk then
again we are okay. The last situation is that the two angles are different and one of
them is Φk. Let γ1

0 denote γ0|Cαl in the first two cases and the subarc of γ0|Cαl that

corresponds to the angle Φk in the second case. Hence (ψn1 , · · · , ψnkn) is an ordered

subset of Θ(γ1
0 , Tv̄n(γ0)|Cαl ). Using the convergence Tv̄n(γ0)→ Lα1,··· ,α3g−3

(γ0) and

our assumption ψni → φi we conclude that φi ∈ Θ(γ1
0 , Lα1,··· ,α3g−3

(γ0)|Cαl ).
From Lemma 4.13.1 we have a description for Θ(γ1

0 , Lα1,··· ,α3g−3
(γ0)|Cαl ). In par-

ticular, a fixed angle can appear in Θ(γ1
0 , Lα1,··· ,α3g−3

(γ0)|Cαl ) at most 2ι(γ1
0 , αl)

times and Φk is its only accumulation point. Let us consider an angle ψ in
Θ(γ1

0 , Lα1,··· ,α3g−3
(γ0)|Cαl ) that is not equal to Φk. Choose ε > 0 small enough

such that (ψ − ε, ψ + ε) and Iε1, · · · , Iεk are disjoint and (4.12) is true. Then the
number of angles in any ΘS(γ1

0 , Tv̄n(γ0)) that lie in (ψ − ε, ψ + ε) is uniformly
bounded, independent of n. In particular, only finitely many φi can be equal to ψ.
Hence φ = Φk.

Now we show that each Ki contains an isolated leaf. We argue by contradiction
and assume that Ki does not contain any isolated leaf. Hence each point in γ′0∩Ki

is a point of accumulation of γ′0 ∩Ki. In particular γ′0 ∩Ki contains uncountably
many points. By the first part of this proof all the angles of these intersections
must come from the finite set {Φ1, · · · ,Φk}. Let ` be a leaf of Ki. Since Ki is
minimal ` must intersect γ′0 infinitely many times. Let `0 be a subarc of ` between
two such intersections. Using minimality once again we find subarcs `i of possibly
other leaves of Ki such that `i → `0 uniformly. Now lift the whole situation on H2.
Let γ1, γ2 be two fixed lifts of γ′0 such that a lift ˜̀

0 of `0 joins γ1 and γ2. Using the

fact that `i → ` uniformly we can find lifts ˜̀
i of each `i such that ˜̀

i also joins γ1

and γ2. Since `0 and `is are parts of a geodesic lamination their lifts ˜̀
0 and ˜̀

i are
mutually disjoint. Thus subarcs of γ1, γ2, ˜̀

i and ˜̀
j for each i 6= j bound a geodesic

rectangle, say R(i, j).
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Now consider the angles of intersections Θ(γ1, ˜̀
i). Since they must be one of

Φ1, · · · ,Φk we can extract a subsequence of `is such that Θ(γ1, ˜̀
i) = (Φl) for some

l independent of i. Extracting a further subsequence we can further ensure that
Θ(γ2, ˜̀

i) = (Φk) for some k independent of i. Finally we reach our contradiction
by computing the area of R(i, j) for this extracted sequence of `i, `js (which, by
our assumption, is equal to zero!) �

Let us denote the simple closed geodesic Ki by α′i. So there are leaves of Lγ′0
that spiral around α′1, ..., α

′
l. Of course Lγ′0 can have much complicated behavior

away from γ′0. Now we make this observation precise.

Definition 6.1.1. Let p be a point of intersection between γ′0 and Lγ′0 . Let ` be the
leaf of Lγ′0 that intersects γ′0 at p. We say that p corresponds to a spiraling if one
of the half-leaves of `, determined by p, spiral around one of α′1, · · · , α′l along one
of its (two) ends.

Lemma 6.1.2. All but finitely many points of intersections between γ′0 and Lγ′0
correspond to a spiraling.

Proof. We argue by contradiction and assume that there are infinitely many points
x1, · · · , xn, · · · of intersections between γ′0 and Lγ′0 that does not correspond to a
spiraling. Since γ′0 is a closed geodesic the sequence of points x1, · · · , xn, · · · have
a point of accumulation on γ′0. By Lemma 6.1.1 this point of accumulation must
be a point of intersection between γ′0 and a minimal component of Lγ′0 . By the last
theorem it must be one of the α′is. Since α′i is a closed geodesic all but finitely many
of x1, · · · , xn, · · · corresponds to spiraling around α′i. This is a contradiction. �

Let Nγ′0 be the number of points of intersection between γ′0 and Lγ′0 that does not
corresponds to a spiraling. By the last lemma and Lemma 4.13.1 the (ordered) set
of accumulation points of ΘS′(γ

′
0, Lγ′0) is exactly ΘS′(γ

′
0,∪ki=1α

′
i). We now compare

this with ΘS(γ0,P0)

Lemma 6.1.3. As ordered sets ΘS(γ0,P0) = ΘS′(γ
′
0,∪ki=1α

′
i).

Proof. Let ΘS′(γ
′
0,∪ki=1α

′
i) = (θ1, . . . , θp). By the last lemma all but Nγ′0 angles in

Θ(γ′0, Lγ′0) corresponds to spiraling around one of the α′1, ..., α
′
l. Since Θ(γ′0, L) =

Θ(γ′0, Lγ′0) using the convergence δ′n → L and Lemma 4.13.1 we conclude that
ΘS′(γ

′
0, δ
′
n) consists of an ordered set (I(θ1), . . . , I(θp)) where each entry in I(θi)

lie in (θi − ε, θi + ε) and rest of the angles in ΘS′(γ
′
0, δ
′
n) has cardinality bounded

independent of n.
Since ΘS′(γ

′
0, δ
′
n) = ΘS(γ0, Tv̄n) we actually know that the latter consists of

an ordered set (I(φ1), . . . , I(φl)) where I(φi) looks like Theorem 4.11.1 and the
rest of the angles in ΘS(γ0, δvn) has uniformly bounded cardinality independent of
n. Comparing the two descriptions of the same set ΘS′(γ

′
0, δ
′
n) = ΘS(γ0, Tv̄n) we

conclude the lemma. �

Recall that L is the limit of a sequence of simple closed geodesics and there are
only finitely many isolated leaves (in any geodesic lamination; Theorem 2.4.1) in L
that spiral around α′i. Hence for each i there are a finite and equal number of leaves
spiraling around α′i from both sides in the same direction. Let ξi be the number
of leaves that spiral around α′i from one side. Since L is the limit of (δ′n) it follows
that ι(α′i, δ

′
n) = ξi.

Untwisting. From the above observations it is reasonable to think that, up to
extracting a further subsequence, (δ′n) are the images of a fixed simple closed ge-
odesic δ′0 ∈ G(S′) under various combinations of Dehn twists along αis. We make
this precise in the next proposition.
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Proposition 6.2. There is a subsequence δ′mn of δ′n and a simple closed geodesic
δ′0 such that

δ′mn =

l∏
i=1

Ds
i
n

α′i
(δ′0) (6.3)

where ι(γ′, δ′0) ≤ Nγ′0 +
∑l
i=1 ξi · ι(γ′, α′i) and Nγ′0 is the number from Lemma 6.1.2.

Proof. Let us start by recalling that a sub-lamination of L spirals around α′1, ..., α
′
l.

Since δ′n → L it follows that for n sufficiently large δ′n has large number of twists
around each α′i. Hence applying Dehn twists to δ′n along α′is we can get simple closed
geodesics that intersect γ′0 fewer of times than δ′n does. Following our notations
from §3 for (s1, · · · , sk) ∈ Zk let Ts1,··· ,sk(δ′n) denote the simple closed geodesic
freely homotopic to Ds1

α′1
◦ · · · ◦Dsk

α′k
(δ′n). Consider a simple closed geodesic βn such

that
ι(γ′0, βn) = min

(s1,··· ,sk)∈Zk
ι(γ′0, Ts1,··· ,sk(δ′n)). (6.4)

A fairly straight forward topological argument provides that

ι(γ′0, βn) ≤ Nγ′0 +

l∑
i=1

ξi · ι(γ′0, α′i). (6.5)

Let δ′n = Tsn1 ,··· ,snk (βn). Now estimate the number l.

Lemma 6.5.1. The collection {α′i : i = 1, 2, ..., l} forms a pants decomposition P ′
of S′. After a rearrangement of the indices

Θ(γ0, αi) = Θ(γ′0, α
′
i).

Proof. The angle set Θ(γ′0,∪li=1α
′
i) is the set of accumulation points of Θ(γ′, Lγ′)

and by Lemma 6.1.3 we have

Θ(γ′0,∪li=1α
′
i) = Θ(γ0,P0).

Now fix one i and for αi consider a α′i for which Φ(γ′0, α
′
i)∩Φ(γ0, αi) 6= ∅. From §4

and the last equality of angle sets we known that there are at most two choices for
this.

Consider φ ∈ Φ(γ′0, α
′
i) ∩ Φ(γ0, αi). On S′ let φ be the angle of intersection

between the subarc γ′i of γ′0|Cα′
i

and α′i. Recall the ordered subset Pεφ(γ′0, δ
′
n) of

Θ(γ′0, δ
′
n) that consists of angles in Θ(γ′i, δ

′
n) with magnitude in (φ − ε, φ + ε). By

Theorem 4.11.1 and Remark 4.13 we have the asymptotic

#|Pεφ(Θ(γ′0, δ
′
n))| ≈ sin · ξi.

From our construction we know on the other hand that

#|Pεφ(γ0, Tv̄n(γ0))| ≈ ι(γ0, αi) · vi,n.
By Lemma 6.1.2 the last two asymptotic counts are comparable i.e.

ι(γ0, αi) · vi,n ≈ ξi · sin. (6.6)

At this point we recall our choice:

lim
n→∞

vi+1,n

vi,n
= 0 for all i = 1, · · · , 3g − 3. (6.7)

By Lemma 6.1.3 we know that for any φ1 ∈ ΘS(γ0,P0) there is an α′i such that
φ1 ∈ ΘS′(γ

′
0, α
′
i). To estimate the number l we first count how many angles in

ΘS′(γ
′
0,∪li=1α

′
i) can belong to the same ΘS′(γ

′
0, α
′
i). If φ1, φ2 ∈ ΘS′(γ

′
0, α
′
i) then by

(6.6) and (6.7) it follows that there is exactly one j such that ΘS(γ0, αj) = (φ1, φ2).
In particular, from the special properties of P0 from Theorem 1.3.1, it follows that
at most two angles in ΘS′(γ

′
0,∪li=1α

′
i) can belong to the same ΘS′(γ

′
0, α
′
i) and that
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happens only if they belong to one of the ΘS(γ0, αj). Hence l is at least 3g − 3.
Since g′ ≤ g and α′is are mutually disjoint, we must have g′ = g and l = 3g − 3.
Therefore every αi corresponds to a unique α′i such that ΘS(γ0, αi) = ΘS′(γ

′
0, α
′
i)

and we have a pants decomposition P ′0 = {α′i : i = 1, 2, ..., 3g − 3} of S′. �

Now we are ready to finish the proof of our proposition. It suffices to show that
`(βn) is uniformly bounded. We argue by contradiction and assume that `(βn) is
unbounded. In particular, there is at least one pair of pants P determined by P ′0
such that the length of βn restricted to P do not stay bounded. Now recall that for
each i we have ι(βn, α

′
i) = ξi, a fixed finite number determined by L. Hence one of

the subarcs of βn stays entirely inside P whose length does not stay bounded. This
implies that this subarc twists around one of the α′i in ∂P a large number of times.
In particular, ι(γ′0, βn) does not stay bounded. This is a contradiction to (6.5). �

The only part of Theorem 1.5.1 that remains to be proven is:

Lemma 6.7.1. After rearranging the indices according to Lemma 6.5.1 for each
i = 1, ..., 3g − 3 we have `(α′i) = `(αi).

Proof. Recall that our geodesic Tv̄n(γ0) is the geodesic freely homotopic to D
v1,n
α1 ◦

· · ·Dv3g−3,n
α3g−3 (γ0). Thus we have the following length comparison from Theorem 4.2

3g−3∑
i=1

ι(γ0, αi) · (vi,n − ki) · `(αi) ≤ `(Tv̄n(γ0))

≤ `(γ0) +

3g−3∑
i=1

ι(γ0, αi) · vi,n · `(αi) (6.8)

where ki are some fixed positive integers depending on α1, ..., α3g−3, γ0. By the last

proposition we also know that δ′mn is the geodesic freely homotopic to Ds
1
n

α′1
◦ · · · ◦

Ds
3g−3
n

α′3g−3
(δ′0) which provides via Theorem 4.2

3g−3∑
i=1

ξi · (sin − k′i) · `(α′i) ≤ `(δ′mn) ≤ `(δ′0) +

3g−3∑
i=1

ξi · sim · `(α′i) (6.9)

where k′i are fixed some positive integers depending on α′1, ..., α
′
3g−3, δ

′
0. The rest

of the arguments consist of computing some limits using: (1) the equality `(δvn) =
`(δ′n), (2) the inequalities (6.8) and (6.9) and (3) the asymptotic behavior (6.6).
For example, to prove `(α′1) = `(α1) we use (6.6) to find that

lim
n→∞

`(δvmn )

ι(γ0, α1) · v1,mn

= lim
n→∞

`(δ′mn)

ξ1 · s1
mn

.

Using (6.7) we observe that the left limit is `(α1) by (6.8) and the right limit is
`(α′1) by (6.9). Now we use induction and assume `(αi) = `(α′i) for i ≤ k−1. Using
(6.6) once again we obtain the equality

lim
n→∞

`(δvmn )−
∑k−1
i=1 ι(γ0, αi) · vi,mn`(αi)

ι(γ0, αk) · vk,mn
= lim
n→∞

`(δ′mn)−
∑k−1
i=1 ξi · s1

mn`(α
′
i)

ξk · skmn
.

As above, using (6.7) we can observe that by (6.8) the left limit is `(αk) and by
(6.9) the right limit is `(α′k). �

7. Further remarks and questions

From the methods and already known results the following questions arise nat-
urally.
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7.1. Enlarged length-angle spectrum: Since the marked length spectrum de-
termines the metric on Sg among all negatively curved metrics ([18], [8]) it is
tempting to conjecture a similar generalization for Theorem 1. We would like to
point out that such a result is false. To see this we first recall that for any fixed
closed hyperbolic surface S there is an open set US ⊂ S such that no simple closed
geodesic on S enter US [2], [5]. Perturbing the metric inside US it is possible to
construct a negatively curved surface S′ that is not isometric to S but has length-
angle spectrum identical to S. It is, however, non-trivial to answer the following
questions.

One may consider all closed geodesics on S and the corresponding length-angle
data:

L′Θ(S) = {(`γ , `δ,Θ(γ),Θ(δ),Θ(γ, δ) : γ, δ ∈ C(S)} (7.1)

where Θ(γ) = Θ(γ, γ). Then a natural question to ask if L′Θ(S) determines the
metric among all metrics on a fixed closed surface ? A more ambitious question
would be to ask if L′Θ(S) determines the metric among all metrics on all closed
orientable surfaces ?

7.2. Simple length spectrum rigidity: It is mentioned in the introduction that
Wolpert’s method shows that there are only finitely many closed hyperbolic surface
of fixed genus that has the same simple length spectrum. An interesting question
to ask: Does the simple length spectrum determine the surface ?

Due to the works [21], [20] and many other authors it is known that the length
spectrum is not rigid for higher genus hyperbolic surfaces. The constructions in
these papers involve the whole length spectrum and so it seems difficult to find a
counterexample to our question following these methods.

8. Appendix

In this small section we explain some basic results used in the paper that are
probably know to experts.

8.1. Lengths of end-to-end arcs. The first result is about the length of an end-
to-end arc inside the collar Cα around α. Fix a set of Fermi coordinates (r, θ) on
Cα.

Figure 10. Length in a collar
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Lemma 8.0.1. Let γ be an end-to-end geodesic arc in Cα around α. Let η be an
almost radial arc in Cα. Then `(γ) ≥ (ι(γ, η)− 2)`(α).

Proof. Let ηφ be a radial arc that does not intersect η. By Lemma 4.1.1 we know
that

ι(γ, ηφ) ≥ ι(γ, η)− 1. (8.1)

Consider a subarc γ′ of γ between two consecutive intersections with ηφ. The pro-
jection from this subarc to α via the θ coordinate (of the Fermi coordinates) is
surjective. Since this projection is length decreasing we have `(γ′) ≥ `(α). We ob-
tain the lemma by adding up all the pieces of γ between its consecutive intersections
with ηφ via (8.1). �

8.2. Uniform bound on the number of intersections. Our next result is used
in §3 where we study how the length and angle sets evolve under various Dehn
twists. Let α1, ..., αk be k mutually disjoint simple closed geodesics. Let γ be a
simple closed geodesic that intersects each αi. We consider the sets

N (m1, ...,mk, l) = {η ∈ GL(S) : ι(η, αi) = mi for i = 1, 2, ..., k

and ι(η, γ) ≤ l}.

Our purpose here is to understand how the intersections between γ and various
Dehn twists of η along α1, · · · , αk are located on S.

Lemma 8.1.1. There is N = N(m1,m2, ...,mk, l) > 0 such that for any η ∈
N (m1, ...,mk, l) and any tuple (n1, n2, ..., nk) ∈ Zk one has

ι(γ|S\∪ki=1Cαi
, Tn1,n2,...,nk(η)) ≤ N.

Proof. Let η ∈ N (m1, ...,mk, l). Let (n1,j , n2,j , ..., nk,j) ∈ Zk be a sequence such
that Tn1,j ,n2,j ,...,nk,j (η) → L a geodesic lamination. The structure of L is easy to
describe. The minimal sub-laminations of L are those of η and α1, · · · , αk. Since
ι(η, γ) ≤ l no non-isolated minimal component of η intersect γ. In particular, the
only non-isolated minimal components of L that intersect γ are α1, · · · , αk. Hence
we can find a N = N(L) such that ι(γ|S\∪ki=1Cαi

, L) ≤ N .

To prove the lemma we argue by contradiction and assume that we have ηj ∈
N (m1, · · · ,mk, l) and a sequence (p1,j , p2,j , · · · , pk,j) ∈ Zk be such that for all j

ι(γ|S\∪ki=1Cαi
, Tp1,j ,p2,j ,··· ,pk,j (ηj)) ≥ j. (8.2)

Up to extracting a subsequence both (ηj) and (Tp1,j ,p2,j ,··· ,pk,j (ηj)) converge to some
geodesic laminations. It is not that difficult to see that if ηj → η then the limit of
Tp1,j ,p2,j ,··· ,pk,j (ηj) up to extracting correct subsequences is the same as the limit
of Tp1,j ,p2,j ,··· ,pk,j (η) which we denote by L0. Now η ∈ N (m1, · · · ,mk, l) so by the
first paragraph of this proof we have a N0 = N0(L0) such that

ι(γ|S\∪ki=1Cαi
, L0) ≤ N0.

On the other hand, from (8.2) and the convergence Tp1,j ,p2,j ,··· ,pk,j (ηj) → L, we
have

ι(γ|S\∪ki=1Cαi
, L0) =∞.

Hence we have a contradiction. �
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8.3. Dehn twist and homotopy. In the proofs of Theorem 4.8.1 and Theorem
1.3.1 we have used certain qualitative facts about Dehn twists. To recall the scenario
let α be a simple closed geodesic on S and let Cα be the collar neighborhood around
α. Fix a set of Fermi coordinates on Cα and orient α according to the orientation
explained in §1.3.1.

Let η, ξ be two end-to-end geodesic arcs. By Theorem 4.8.1 there is another end-
to-end geodesic arc ξ0 and m ∈ Z such that ξ = Dmα (ξ0) with η and ξ0 are either
identical or disjoint. Clearly ι(η, ξ) = m. Let x be the point of intersection between
α and η and y be the point of intersection between α and ξ. Consider the right
half R of Cα \ α with respect to the starting Fermi coordinates. Let x1, · · · , xk be
the points of intersection between η and ξ that lies in R arranged in the ascending
order of their distances from x along η. Let ηi be the subarc of η between x and xi
and ξi be the subarc of ξ between y and xi. Let ηi : [0, 1] → R and ξi : [0, 1] → R
be their parametrization such that ηi(0) = xi = ξi(0) and ηi(1) = x, ξi(1) = y.

Lemma 8.2.1. There is a smooth homotopy H : [0, 1]× [0, 1]→ R between ηi and
ξi such that: H(s, 0) = ηi(s), H(s, 1) = ξi(s) and H(1, t) : [0, 1]→ α is orientation
reversing.

Proof. In a sense Figure 11 is our complete proof. The semi-annular regions are
fundamental domains for Cα. In these fundamental domains we can explicitly draw
lifts of any end-to-end geodesic arc. Namely, for Dmα (ξ0) we would consider the two
end points of ξ0. Then we would use explicit expression for Dm

α (ξ0) to draw one of
its explicit lifts in |m| consecutive fundamental domains of Cα.

ζ0ζ α
η

Figure 11. Homotopy I

Finally to draw a lift of Dmα (ξ0) explicitly we would recall that the latter is the
geodesic (there is exactly one such) that joins the end points of the last lift of
Dm
α (ξ0). �

Remark 8.3. If we consider the left half of Cα \ α instead of the right half, with
respect to the starting Fermi coordinates, then the last lemma for the corresponding
subarcs needs the modification that the map H(1, t) : [0, 1] → α is orientation
preserving, instead of orientation reversing.
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Now we consider another Dehn twist considered in the proof of Theorem 1.3.1.
To explain our situation let us consider an X-piece. Let β, η be the arcs as in
picture. Consider the collar Cη around η and fix a set of Fermi coordinates in it.
Consider the orientation of η determined by these coordinates as in §1.3.1. Observe
that β and Dη(β) are divided into two geodesic arcs by η. We shall consider the
left half of these two arcs (determined by the Fermi coordinates). Let us denote
these two arcs by aβ and aDη(β).

Lemma 8.3.1. There are parametrization aβ : [0, 1]→ X, aDη(β) : [0, 1]→ X and
a smooth homotopy H : [0, 1] × [0, 1] → X such that H(s, 0) = aβ(s), H(s, 1) =
aDη(β)(s) and H(0, t), H(1, t) are smooth maps from [0, 1] → η. Moreover the last
two maps are orientation preserving.

Proof. Consider the hyperbolic funnel Tη = H2/〈γη〉 where γη is a generator of
π1(Cη) ⊂ π1(X). In particular, we can lift β and Dη(β) on Tη. Observe that the
Fermi coordinates on Cη provides a coordinate system on Tη. With respect to these
extended coordinates we consider cylindrical neighborhoods of η that are bounded
by curves that look like {r = c}, called equidistant curves. These neighborhoods
are very similar to collar neighborhoods. In particular, we can replace Cα by one
of these neighborhoods in the last lemma to get a similar result.

β2η2

Figure 12. Homotopy II

Let C be the smallest such cylindrical neighborhood that contains the four inter-
sections between the lifts of β and Dη(β) closest from η. Since Dehn twist is defined
up to homotopy, it follows that each subarc of Dη(β) in C is the Dehn twist of a
subarc of β under the end point fixing homotopy. The existence of our homotopy
now follows from a modified version of the last lemma. �
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